

P————

- Responsive Design Approaches

* There is no shortage of debate about the best way to
develop Web sites that work well across many
networked devices.

Some teams favor a client-side approach

Some lean towards server-side solutions (e.g., Adaptive
Images)

Others are interested in solutions that try to bring
together the best of both worlds.

» RESS (Responsive Web Design + Server Side
Components) is one such proposal.

P————

- Responsive Design Approaches

* In Responsive Web Design implementations,

Web URLs are consistent across devices and

Adapt their content based on the capabilities of the
browser in which they are displayed.

* This means the same hyperlink can deliver a great
experience across a wide range of devices.

We know that this has a negative impact on the use of
CDNs which in turn impacts performance

P————

- Responsive Design Approaches

* In order to adapt effectively, Web sites generally need

» a single source order of markup,
» a single URL structure, and

» flexible media that can scale across screen sizes (which
can become a performance challenge).

Responsive Design

e Server side solutions, on the other hand, only send
what a client needs. This means that source order, URL
structure, media, and application designs can be finely
optimized for a specific device class before ever
reaching its browser.

* But server-side solutions generally rely on user agent
redirects to device-specific code templates. Each
device class that warrants adaptation needs its own set
of templates and these templates may ultimately
contain duplicative code that actually applies to every
class of device.

P————

- Responsive Design

* So both client and server side adaptations have
benetfits but a few limitations.

* How do we get the best of both worlds without the
challenges that can hamper each?

RESS (Responsive Web Design + Server Side
Components) is a concept that looks to address this.

Responsive _
Web Desion RESS

P————

- RESS

* Responsive Design + Server Side Components (RESS)
is being called Next Generation Responsive Design

Term was coined in 2011

* In a nutshell, RESS combines adaptive layouts with
server side component (not full page) optimization.

* A single set of page templates define an entire Web site
for all devices but key components within that site
have device-class specific implementations that are
rendered server side.

RESS — How it Works

* Let us assume we want a different navigation solution
for mobile and desktop devices.

Because screens are small on mobile, we want a minimal
header that does not take space away from content.

But we need to allow people to navigate the site in a
comfortable way so we will position the navigation links
at the bottom of the page where accessing them tends to
be easier with one-handed use.

On the desktop, however, we want the same navigation
at the top of the page. There is plenty of room for the
content and we can expose all our menu choices to give
people a sense of what's on the site.

Example Navigation

il Carrier = T:13 AM

-~ - check

Bag{:h""fl{ Sae gt ASnit Bag Hsis 1

P—————

RESS — How it Works

* To implement this with RESS I wll use two variables in
our page template (defined here using Mustache) for
the header and footer.

<body> {{>header}}
[-..document content...]

{{>footer}} </body>

P—————

- RESS — How it Works

* Here the entire page is coded using flexible grids and
media queries to manage multiple resolution
breakpoints thereby taking advantage of what
Responsive Web Design does well.

* But each of the variables is a component that has
device class optimized implementations for it on the
server. In this case:

header.html mobile header.html footer.html
mobile footer.html

| / °
Detection

* Modernizr (http://modernizr.com) is a feature
detection framework that makes it easy to detect
browser features.

* It simply runs a test in the browser to get a boolean
answer as output: “does X work?” and the answer is
mostly “true” or “false.”

P——————

Modernizer Example

Modernizr.load({
test: Modernizr.geolocation,
yep : "geo.js”’,
nope: "geo-polyfill_js*

P:

P——————

- Modernizer Example

* In this example, we decided that we should load a
different script depending on whether geolocation

is supported in the host browser or not.

* By doing this, you save users from having to download
code that their browser does not need.

* This increases page performance, and offers a clear
place to build a healthy amount of abstraction to your
polyfills (both ‘geo. js’ and ‘geo-polyfill._js’
would seem the same to the rest of the app, even if
they are implemented differently)

P—————

~ Polyfills

* Definition
a polyfill (or polyfiller) is downloadable code which
provides facilities that are not built into a web browser.

[t implements technology that a developer expects the
browser to provide natively providing a more uniform
API landscape.

* For example, many features of HTML5 are not
supported by versions of Internet Explorer older than
version 8 or 9, but can be used by web pages if those
pages install a polyfill

P————

- Device Detection

* Device detection on the other hand, is something
different. It all happens on the server

* Analyses the HTTP header of the device.

» It then looks up in a database of known devices and
return a set of capabilities for that device.

P————

- Device Detection

® The beauty of thisis t
information that is col

hat it is a database of
lected and maintained by

humans and it can ho!
information about capabilities that is currently
impossible to feature test.

d incredibly detailed

Examples include device type (desktop, TV, mobile,
tablet), device marketing name, video codec support

and so on.

Device Detection

* Device Detection Frameworks
» WURFL (http://scientiamobile.com/cloud)

o A free and for fee service

RESS — Device Detection

* Sample Site
 http://andmag.se/ress/

* Visit this site using various devices
» Desktop

* Smart Phone - try several
* Tablet

Easy to install and maintain
Auto-updated DDR
Multiple APl platforms: Java, PHP, .NET, Python, Ruby, Node.js, Perl

Multiple plans to fit your needs

Data Center
Web Server
HTTP

Request S

Appropriate g

Web Content Python, Ruby,
Wode js, Perl

Getting Started with WURFL

® http://scientiamobile.com/wurflCloud/gettingStarted

- Device Detection with WURFL

e WURLF stands for stands for Wireless Universal
Resource File

* WUREFL is a Device Description Repository (DDR)
which serves as a central source of device information
for mobile web applications. It contains descriptions of
thousands of mobile devices that can be used in any
application, free or commercial

- Device Detection with WURFL

* WUREFL is recognized as the de-facto standard in the
area of Device Description Repositories.

* The WURFL project began in 2002, with the intention
of tackling the issues of mobile device fragmentation.
[t seeks to do so by providing developers across the
world with a common set of device information.

—

Device Detection with WURFL

* WUREFL has the following editions:
» Java Edition
o PHP Edition
» .Net Edition (Also called NuGet)
e Database Edition
e JavaScript

s Perl

- Device Detection with WURFL

- Device Detection with WURFL

* The figure on the left shows the different markup
languages.

* Since the coders design the application to support all
the available devices, the available domain for coding
is the area of intersection. Due to introduction of more
and more devices and the difference in device support
and features, this region generally becomes smaller
and smaller.

- Device Detection with WURFL

* WURFL addresses this issue by detecting the device
type and then delivering suitable markup. The figure
on right demonstrates the available markup range for
the coders to develop, which is the sum of all the
markup regions.

* WURFL contains 7,000+ unique devices and
thousands of firmware variations, representing nearly
every mobile device on the market worldwide!

P—————

- WURFL Flow

* Once an application request from a device reaches the
web server, the WURFL framework detects the device
type and produces markup generated specifically for
the device.

WURFL Flow

Markup 1 for
Mokia phones

Markup 2 for

P . Sony phones
Device detection ¥ H

and Markup
using WURFL

Application WURFL
Reguest FRAMEWORK

Markup 3 for LG

phones

Markup 4 for
Samsung phones

P—————

- WUREFL Delivery Formats

* WML - Wireless Markup Language
* XHTML - Extensible HypeText Markup Language
* C-HTML - Compact HTML

~ Capabilities

* http://wurtl.sourceforge.net/help_doc.php

The WURFL Device Hierarchy

WURFL WURFL ID

generic

generic _mobile
) generic xhtml
uptext

nokia generic_series40
nokia_generic_ series60

nokia generic_seriesb0_dp20

nokia n70_verl
nokia n70 verl subl052601

nokia n70_wverl sub operal

. <device> element in WURFL

Generic

Generic Mobile

Family

Actual Device Root (WURFL-Profile)

Device Subversion

Fall Back

P—————

- Java Code Example

e Download from

http://sourceforge.net/projects/wurfl/files/ WURFIL.%20
Java%20API/1.5/

* Unpack the package into your tomcat webapps/
directory

e hit http://yourserver][:port]/wurfl-
helloworld-{servlet|spring}-{version}/

with your browser.

Code Dissected

import java.io.lIOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import net.sourceforge.wurfl.core.Device;

import net.sourceforge.wurfl.core.MarkUp;

import net.sourceforge.wurfl.core. WURFLEngine;

import net.sourceforge.wurfl.core.exc.CapabilityNotDefined Exception;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

Code Dissected

public class HelloWorld extends HttpServiet {
/** Serial */
private static final long serialVersionUID = 10L;

private static final String XHTML_ADV =
"xhtmladv.jsp";

private static final String XHTML_SIMPLE =
“"xhtmImp.jsp";

private static final String CHTML = "chtml.jsp’;

private static final String WML = "wml.jsp";

/** Logger */
private final Logger log =
LoggerFactory.getlLogger(getClass());

Code Dissected

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, [10Exception {
processRequest(request, response);

}

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, 10Exception {
processRequest(request, response);

Code Dissected

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, [10Exception {

WURFLENngine engine = (WURFLEngine)
getServietContext() .getAttribute(WURFLEngine.class.getName

O);

Device device =
engine.getDeviceForRequest(request);

log.debug(''Device: " + device.getld());
log.debug("Capability: " +
device.getCapability(''preferred markup'));

Code Dissected

String jspView = null;

iIT (MarkUp.XHTML_ADVANCED.equals(markup)) {
JjspView = XHTML_ADV;

} else 1t (MarkUp.XHTML _SIMPLE.equals(markuUp)) {
JjspView = XHTML SIMPLE;

} else 1t (MarkUp.CHTML.equals(markUp)) {
JspView = CHTML;

} else 1t (MarkUp.WML.equals(markup)) {
JjspView = WML;

}

log.info("'View: + jspView);

Code Dissected

iIT (markUp == MarkUp.XHTML ADVANCED ||
markUp == MarkUp.XHTML_SIMPLE) {
String contentType = "text/html";

try {

contentType =
device.getCapability("'xhtmlmp_preferred mime_ type");

} catch (CapabilityNotDefinedException e) {

throw new RuntimeException(''Somethingh i1s seriously
wrong with your WURFL:'" + e.getLocalizedMessage(), €);

}
request.setAttribute('contentType', contentType);

log.debug(*'ContentType: " + contentType);

xml.com - Listener

* The class is called
net.sourceforge.wurfl.core.web.WURFLServletContextListener
and it will take care of configuring
net.sourceforge.wurfl._core.WURFLENngine

as a wurflEngine.

<listener>
<listener-class>

net.sourceforge.wurfl._.core.web.WURFLServiletC
ontextListener

</listener-class>
</li1stener>

¢ In addition to this class, the
WURFLServletContextListener will also load the
wurfl _zip file by reading the "wurfl" parameter

from the web.xml itself.

<context-param>
<param-name>wurfl</param-name>
<param-value>/WEB-INF/wurfl ._zip</param-value>
</context-param>

P————

web.xml - Snippet

* New capability filter feature can also be configured
directly from the web.xml; capability names can be
specified into a context parameter value, simply called
capability-filter. Capabilities need to be specified one-
per-line without punctuation marks, like this:

xXml - Snippe

<context-param>
<param-name>capability-filter</param-name>
<param-value>
device os
device_0s version
iIs tablet
iIs wireless device
mobile_ browser
mobile _browser version
pointing_method
preferred_markup
resolution_height
resolution_width
ux_Full desktop
xhtml support_level
</param-value>
</context-param>

mladv.jsp - snippe

<hl>Hello From XHTML ADVANCED</h1>

<p>ContentType: <W=request.getAttribute('contentType'")
N></p>

<p>Device:
<W=((Device)request.getAttribute(''device')).getld() %></p>

<p>Virtual capabilities:</p>

<p>ls smartphone:

<W=((Device)request.getAttribute(''device')) .getVirtualCapability(
""1s_smartphone') %></p>

<p>Device OS:
<W=((Device)request.getAttribute(''device')).getVirtualCapability(
"advertised device 0s") %></p>

<p>ls Android:
<W=((Device)request.getAttribute(''device')) .getVirtualCapability(
“1s_android') %></p>

<img src="images/logo.gif" width="59" height="76"
alt=""1ogo""/>
</body>

<body>

