

P———

- Responsive Media

* When it comes to rich experiences online, we have a
love/hate relationship.

* Love

Beautiful images and interesting videos help to provide a
deeper, more pleasant experience.

e Hate

Including many images and videos on a page results in a
slow loading time, which can be very frustrating.

P———

- Responsive Media

* It takes careful consideration and planning to give
users the best of both worlds:

a beautiful experience that loads as quickly as possible.

* We have already seen that the following help create
Responsive Designs

Fluid Layouts

Viewports

Media Queries
Grid Based Layouts

* But there is still plenty of room to tidy things up

P———

- Responsive Media

* With this topic, we will discuss:
Why performance matters
How to conditionally load images

What responsive image solutions are available, and their
limitations

How to swap out background images without
downloading multiple images

How to conditionally load web fonts
What iss ahead for responsive images

How to make embedded video scale while maintaining
its aspect ratio

What to do with responsive advertising

P—————

- What the problem?

* Not all Media can scale to the degree we want
 If I try to scale too large the image start to pixelate
 If I try to scale too small the focus of the image gets lost

P————

Image Size Comparison

Normal Size Enlarged

P————

Image Size Comparison

Normal Size Reduced

' A
: _

-

P—————

- What the problem?

* However, image quality is only one part of the
problem. Another problem is the image weight and
the demand that places on performance

* With what we have been doing so far, the same image
is being loaded regardless of the device in use.

* That means, an 624px lead-in image is being
downloaded even on small screens where a 350pX
image is all that is needed.

* The page performance is visibly suffering.

P—————

- Performance

* Poor performing has an impact on site impact

* Case Study

Shopzilla improved its page load time from 4 to 6
seconds to 1.5 seconds. The results were stunning. The
site’s conversion rate increased by 7 to 12 percent and
page views jumped a whopping 25 percent.
Personal experience supports this
® The situation is much worse for mobile phones.
Networks are slower, hardware is less capable, and you
have to deal with the messy world of data limitations
and transcoding methods.

e *
Issues with Mobile Sites

* Download and Hide
* Download and Shrink
* Excess DOM

P————

- Download and Hide

* Two Approaches to hiding an item
* visibility:hidden
- display:none

® See them in use here

<IDOCTYPE html>
<html>
<head>
<style>
img.hidden {display:none;}
</style>
</head>

<body>
<h1>The next image will not display</hl>
<img class=""hidden" src="https://whatson._bfi.org.uk/ArticleMe

<hl1>Visible Image</h1>
<img src="http://www.wired.com/images blogs/underwire/2013/1:

</body>

</html>

P—————

- Download and Hide

* The problem with this solution is it does not stop the
download. It just prevent displaying the image after
download

* So we have to think Mobile-Up and decide what
images we need, and not Desktop-Down and decide
which images to hide

P—————

- Download and Shrink

* Conceptually similar to Download and Hide

* Here we download an image intended for a large
screen device and shrink the image down to fit into a
smaller display area

® The result is that we degrade performance by
downloading too much image data

» We should download the right sized image.
Image resizers

Digital Asset Management (DAM) systems

* So where do we start?

» Refer Back to Future Friendly Manifesto (Slide deck
#11 - slides 22-27)

* Step One

» Remove all the graphics

* This gives us a bare bones solution and can represent a
solution approach for our lower end platforms

- HTMVU's data-* Attributes

* The data-* attributes is used to store custom data
private to the page or application.

* The data-* attributes gives us the ability to embed
custom data attributes on all HTML elements.

* The data-* attributes are supported in all major
browsers.

* The attribute value can be any string

- HTMVU's data-* Attributes

* The stored (custom) data can then be used in the
page’s JavaScript to create a more engaging user
experience (without any Ajax calls or server-side
database queries).

* The data-* attributes consist of two parts:

The attribute name should not contain any uppercase
letters, and must be at least one character long after the
prefix “data-"

The attribute value can be any string

HTMVLU's data-* Attributes

* Example

<l1 data-animal-type="bird">
Oowl

<l1 data-animal-type="fish'>
Salmon

<l1 data-animal-type="'spider">
Tarantula

- HTMVU's data-* Attributes

* Important:

» Custom attributes prefixed with “data-" will be
completely ignored by the user agent e.g., Browser.

=**slats”>

I data-src =*“1mages/ball.jpg”

<h3> Kicker connects on record 13 fTield goals </h3>

<li1 data-src =*“Images/goal post.jpg” class =‘“group’>

<h3> Your favorite team loses to that team no one
likes </h3>

<li1 data-src =“1Images/ball_fTield.jpg” class =*“group”>

<h3> The Scarecrows Win 42-0 </h3>

group”>

cias

(document.querySelectorA
var res = document.querySelectorAll(query);
}else {
var d = document,
a = d.styleSheets[0] || d.createStyleSheet();
a.addRule(query,’f:b”);
for(var 1 = d.all, b = 0, c =[], T = L.length;
b<*fT; b+ +) {
I[b].currentStyle.f && c.push(l[b]);
a.removeRule(0);
var res = C;

}

return res,;

}

® The JavaScript takes a Selector and returns the
elements that match it

n the Images
azy = Utils.qg(“[data-src]’);
for (var 1 = 0 ; I < lazy.length; 1++){

var source = lazy|[i1].getAttribute(“data-src?’);

//create the i1mage

var img = new Image();

Img.Src = source;

//Insert 1mage inside of the link

lazy[i1].i1nsertBefore(img, lazy.firstChild);

Line 2 grabs any elements with a data-src attribute applied.

Then, in line 3 the script loops through those elements.
In lines 4— 7, the script creates a new image for each element using the value of the

data-src attribute.
The script then inserts the new image (line 9) as the first element within the link.

But this still load all images

The matchMedira() Method

* matchMedia() method is a native JavaScript that
lets you pass in a CSS media query and receive
information on whether or not the media query is a
match

* matchMedi1a() return a MediaQueryList that has the
following properties

matches - a true/false value showing if the media
query matches and

media - the media query passed in the matchMedia()

S ively
Mobile

IT (window.matchMedia(**(min-width: 37.5em)”)_.matches) {
//1oad 1In the 1mages
var lazy = Utils.q(“[data-src]’);
for (var 1 = 0 ; I < lazy.length; 1++){
var source = lazy|[i1].getAttribute(“data-src?);
//create the i1mage
var img = new Image();
Img.Src = source;
//Insert 1mage inside of the link

lazy[1].1insertBefore(img, lazy._firstChild);

* Restricts loading images to displays greater than
37.5em wide

* For small screen devices
Reduced the number of HTTP call by 3

Reduced the size of the size of the page (3 images less to
download)

* This is a Performance gain!!!!

P————

- Responsive Design

* Now we start to see what we have to do to create
responsive design.

* We have to write JavaScript to allow us to intelligently
place content in our Fluid layouts

onsider Again

Starbucks Reserve® Colombia Supremo Valley of #ue wieet g1 e w7
Gold

Available fora
COLOMBIA limited time only

Buy Online

Producer: Farms in the Cauca

Colombia
Elevation: 4,000 - 6,000 feet
Coffee Variety: Caturra and Typica

Processing Method: Washed

A CO'F'FEE d iSCOVEFy Worthy O'F Iegend_ cocoa notes and high herbal aromas

The Cauca highlands of Colombia were settled by Spanish conquistadors searching for EIl Dorado, the fabled Flavor Intensity: Madium

City of Gold. While these explorers did not find what they were looking for, the area is no less rich for the Body: Medium
treasures it does have — starting with this coffee.
Acdidity: Medium

Coalod b annual rainfall nf 80 inchoc o monrs and blnccnminn in tha conl clisnata nf tha northorn Andac thi

Sign In Customer Service Finda Store
Coffee Menu Coffeehouse Responsibility Card Shop
Beans Blends Brewing Drinks Food Mutrition Music Wi-Fi Community Walues Gozls Frogress Register Relozd Rewards Search Compare Buy

Tasting Motes: Sweet walnut flavor with delicate

o |

e
Mobile Sites

* Download and Hide
* Download and Shrink
* Excess DOM

P————

- Excess DOM

e If the same HTML is returned to all browsers, then
mobile sites will get HTML that is far more
complicated than necessary

* More complicated DOM lead to higher memory
consumption and a slower site

P————

- Responsive Image Strategies

* We do not always get the luxury of selecting whether
or not to load an image. Sometimes we have to load an
image

* For Example:
» Logo images

P————

Responsive Image Strategies

® There currently three strategies for handling images:
» Fighting the Browser
» Resignation
» Going to the server

? DONSsSlve 3ge ST
Fighting the Browser

* Most front-end solutions attempt to fight the browser.
They try their best to switch which image is loaded
before the browser can download the wrong one.

* This is an increasingly difficult task. Browsers want
pages to load quickly, so they go to extreme lengths to
download images as quickly as possible.

» Of course, this is a good thing— you want your site to
load as quickly as possible. It is really only annoying
when you want to beat them to it.

Resignation

* This approach admits defeat to the browser. We
cannot adequately control which image gets loaded by
the Browser.

* So lets think Mobile-Up

* Load the small images first and for bigger screen
devices load larger images later.

* Not ideal as this results in the larger screen devices
make two or more HTTP requests per image

Going to the Server

¢ Finally, a few methods use the server and some form of
detection to determine which image to load.

* This method does not have to race the Browser,

because all the logic is executed before the browser
ever sees the HTML.

* This is not a Future Friendly solution, as we are having
to maintain information about every single device that
might access the site.

This is very difficult given the proliferation of devices

PSS

- Image Scaling

* As an example we will use Sencha.io Src created by
James Pearce

* To use it, pick a URL for and image and prefix it with
 http://src.sencha.io/ and

» Some scaling value.

%ncha.io Src ;

* Consider the following image for the TV show Fringe

http://www. funwallz.com/i1mage/tv-fringe-
anna-torv-olivia-dunham-fresh-new-hd-
wal lpaper-28634. jpg

* Image at 100%
http://src.sencha.1o/http://www. funwal lz
.com/1mage/tv-fringe-anna-torv-olivia-
dunham-fresh-new-hd-wal Ipaper-28634. jpg

* Image scaled to 300px

http://src.sencha.10/300/http://www.funw
allz._.com/1mage/tv-fringe-anna-torv-
ol1via-dunham-fresh-new-hd-wal Ipaper-
28634 . Jpg

P————

- Sencha.io Src

* Sencha.io SRC also chaches the request so that the
image is not regenerated every time.

- Challenges

® Sencha.io Src sizes based on 100% of the screen width
not the size of a container in the fluid layout.

* You would have to handle this with some JavaScript -
mode coding

* Scaling is based on the entire image not just a portion
of the image. When scaling down an image you can
loose perspective. You may want to crop the image

Challenges

* This is a third party service
* What if the service provider goes out of business?
* What if the service URL changes?
* What if the Terms of Condition Change?

» What if the image is Classified or considered business
critical?

P—————

- Adaptive Images

* Adaptive Images detects a site’s visitor’s screen size
and automatically creates, caches, and delivers device

appropriate re-scaled versions of your web page's
embedded HTML images.

* No mark-up changes needed. It is intended for use
with Responsive Designs and to be combined with
Fluid Image techniques.

Adaptive Images

* Adaptive images an excellent solution for an existing
site where you may not have time to restructure your
markup or code.

* Generated images are also cached to help eliminate
repeated image regeneration

P—————

- Adaptive Images

* Getting it up and running is a simple three-step
process:

Place the .htaccess and adaptive-images.php files that
are included in the download into your root folder.

Create an ai-cache folder and grant it write
permissions.

Add the following line of JavaScript to the head of your
document:

<script>

document.cookie =“resolution =" +
Math.max(screen.width, screen.height) +°;
path =/7;
</script >

P—————

- Adaptive Images

* Some challenges with Adaptive Images include

A single URL for an image actually refers to multiple
images. The web server dynamically selects, or
generates, the appropriate size image. This will cause
issues with CDNs as they use the URL for cache keys.

Now we no longer have a 1:1 relationship between a URL
and the image

P—————

- Chicken and Egg Dilemma

* To improve performance, browsers want to be able to
be able to download images as soon as possible, before
the page layout is known

* Developers, on the other hand, rely on knowledge on
the page layout to be able to determine which image to

load

=
- Approach

» Ultimately there is no definitive solution currently
exist for responsive images

Image Resizing allows you to create appropriate sized
images for your layout, but you will be dependent on
some external service

Adaptive Images allow you to create, on the server,
images sized appropriate for the device so the HTML is
simpler

P—————

- Web Fonts

* Webfonts are a font format with a specific license that
permits web designers and developers to use real
typography online without losing the advantages of
live text — dynamic, searchable, accessible content

* Until recently, typography on the Web was very limited
font-wise. Most websites could only display text using
the small selection of common system fonts already
installed on the user’s computer.

eb Fonts

* Designers who wanted to introduce some flair,
character or individuality to their work would instead
need to create raster images — with very limited
options for size and placement and serious
implications for those all-important Google search
results — or use substitution software like Flash or
Javascript to render their choice of font, even though
that software itself was not universally available or
taken up by endusers.

* Neither solution was a credible option for extended
body text either, with the substitution techniques in
particular requiring a great deal of processor power to
render large amounts of text.

P—————

- Web Fonts

* @font-face. The CSS declaration that web
designers and programmers use to specify a font. That
font file will either be saved in a directory on your host
server much like the images are, or it could be hosted
by a specialist third party service provider. It's been
around since the late '9os, and in a way was the first, if
not the simplest step on the road to webfonts.

- @Font-face file types

* We need the following file types in order to have the
full 92+% support.

Internet Explorer (all versions): EOT
Safari (3.2+): TTF / OTF
iPhone (3.1) SVG

Chrome (all versions): SVG (TTF/OTF added 25th Jan
2010)

Firefox (3.5+): TTF/OTF (.WOFF added 3.6)
Opera (10+) TTF/OTF

* So, .eot + .ttf /.otf + svg + woff = best support
possible.

@font-face {
font-family: "Blooming Grove'',;
src: url("/fonts/examples/bgrove.ttf")
format(" truetype”),
url (" /fonts/examples/
bgrove.otf")
format("opentype”);

}

.example {

font-family: ""Blooming Grove';
font-size: 1.5em;
+

PSS

- Media Queries

® You can include the @font-face in the Media
Query rules so you can select appropriate font families
for specific devices.

P————

- High-Resolutions Displays

* Creating images for high-resolution displays means
creating larger images, which in turn means larger file
size

* You do not want to pass these larger images to screens
that do not need them.

* So how can we control which images get loaded on a
device

Media Queries

P————

- High-Resolutions Displays

* We use Media Queries and specifically the resolution
feature

min-resolution and

-webkit-min-device-pixel-ratio for WebKit
based browsers

@media only screen and
(-webkit-min-device=pixel-ration: 2),
only screen and (min-resolution: 2dppx){

p——

~ Scalable Vector Graphics (SVG)

* Another solution to scaling images is to choose the
right technology

* Scalable Vector Graphic images are vector images that
can scale without
¢ Increasing the file size
* Losing detail

P—————

Example with SVG

p——

~ Scalable Vector Graphics (SVG)

® There are two main issues standing in the way of SVG
* Lack of Browser support and
» Lack of tool support

-,

Browser Support

* Internet Explorer 8 and lower do not support SVG
* Default Browser on Android does not support SVG
* Other Browsers vary in the level of support

-,

Tool Support

* The most popular tool used for creative design is
Photoshop.
Photoshop is not designed to support SVG
* Adobe Illustrator does support SVG but that is a new
(and costly license) and retraining on a new tool

Consider what it would be like if [made the Java people
write in C# or

The C# people write in Java
That is the degree of challenge

® In HTML5 I can leverage some of the new features

video{
max-width: 100%;
height: auto;

* Many sites pull their videos from a third party
YouTube

Vimeo

Using an iFrame

* In this case setting max-width to 100% and height
to auto means that heirght retains its original value
but width scales.

This breaks the aspect ratio

