e Re'ﬁtionalc

not, and, or, exists, and forallare used instead of the may, 3
denoting negation (—), conjunction (A), disjunction V), exist FmatiCals Section4.2 Expressive Power
(3), and universal quantification (V), respectively. entia] quauﬁg“‘b_% >3
A general TRC expression is of the form "l e F1and 72
TRUE when both F1 and 72 are TrUE and otherwise FaLse
{Tl,Tz,...,Tn‘F(Tl,Tz,.__,Tn)] o Flor F2)
. ? TRUE when either 1 or 2 are TRUE and otherwise FALSE
i ula describi i _— ’
where F is a TRCdfO’?S Lng the propertiles that are tq hold o (3) Let 7(T) be a formula in which the variable T appears free. A variable is free if
data to be retnew.: 3 ¢ output schema of F ig glven by the attribyte Cunlh it is not quantified by an existential or universal quantifier. Then the following
with the tuple variables T1, T2, ..., Tn. S are formulas:
The building block of a TRC formula is an atom Consisting of reg, » (exists T)7(T)
relation or a comparison of an attribute of a tuple variable tq an attribyge ;;:;e lh; TRUE if there exists a value assigned to T that makes F(T) TRUE and otherwise
s : : 0 FALSE.
tuple variable or a doma_m clon'?‘ta?t. An a:pm forms the basis of aformula,wm o (forall T)F(T)
is built up from atoms using logical connectives (not, and, or)and Quanifgy TRUE if any value that is assigned to T makes F(T) TRUE and otherwise FALSE,
(exists, forall).
A valid TRC expression {T1,T2,..., Tn | F(T1, T2, ---, Tn)} has only the
Let . tuple variables T1,T2,..., Tn free in F. Free variables are global variables with
€ respect to the TRC expression . Any other variable appearing in F is a local
. variable and is bound by its quantified declaration. The scope of the local variable is
r be a relation of degree n) the quantified formula. The remainder of the chapter illustrates the TRC language
T and Ti represent tuple variables by example.
i represent an attribute The result of a TRC expression may be saved in an intermediate table. The
al syntax
¢ be a domain constant < = >, >=,<>), and assue th ynta
g be a comparison Oper%tog (<, =< intermediateTable := queryExpression;
operands are comparable by . ' _ _)
assigns theresult of the queryExpression to the intermediateTable. The attribute
names for the schema of intermediateTable are derived from the queryExpres-
An atom is of the form sion. However, if renaming of attributes is desired, then the syntax
o intermediateTable(attr1, ..., attrn) := queryExpression;
o r(T) : lue forming a tuple i T .
hen T is assigned a va provides for the renaming of the output schema of queryExpression to the schema
TRUE W : ise FALSE: ‘ given by the attribute list attr1, ..., attrn.
e Ti.am O Tj.an T4 .an is TRUE and other™! i
; i 6Tl |
when Ti.am :
TRUE- . erwise F ALSE- 4.2 EXPRESSIVE POWER
e T.al . and ot f
i is TRUE : es. . .
TRUE when T.aiéc et ollowing rul v Like DRC, the TRC language is relationally complete, since any relational algebra
£ atoms using t : Query can be expressed in TRC. The TRC language is introduced using the
lais composed ora i examples over the EMPLOYEE TRAINING enterprise, first illustrating the relational
A formu g completeness of TRC using the fundamental operators and then describing tb‘;
la the atom ; orrﬂ“las' : attlidltional operators of relational algebra in TRC. In the ex;mplt::,r;hgalsl:;nz; ";
i . o « g a1€ , the tuple variabl lly abbreviated to one or two characters, :
is a formu yalue ngd g ple variables are usually abbrevia .]
(1) An atom' g is given by the trh en the followiné mnemonic association with the table over which the tuple variable ranges. For
Tts meanin l

F2be formulas;

O o wise FALSE-
=B F is TRUE and other]
TRUE When orwise £ALS
e not F do

S i FALSE 2D

Chapter 4
the EMPLOYEE TRAINING enter

o prise exam
convention is used: Ples, the fOHOWing

t
e E refers to the employee relation.

o Trefers to the takes relation.
e Arefers to the technologyAres relation
e Crefers to the trainingCourse relation

Although more descriptive tu

. ple variable names
for tuple variables provides e

. possible, this
concise, yet readable, ¢ =

MiNg Copyer
xamples, gy

4.2.1 Fundamental Operators

Tabl.e 4.1 summarizes the TRC expressions for operations involving the fundamyy
relational algebra operators, which identify the required operations for efegs
retrieval of information from a relational database. :

The examples over the EMPLOYEE TRAINING enterprise that illustule
expression of the fundamental operators in TRC are summarized in Table42 ‘

TABLE 4.1 TRCsummary of fundamen-
tal relational algebra operators.

Algebra TRC

{R | r(R) and 6 }

;BA((?) {R.ai ... R.aj | r(R)}

rus {T | r(T) Or s(T) } ;
r—s (T | r(T) and not s(T)
qxr {a, R | q(a) and r(R))

/

ING queries: ;
| Emprovee TRAIN]
of fundamenta 1
TABLE 4.2 TRC summary //

Query YTRC

1oyee(E) and E. eSalar

Oo { E | emp

Firs ?

E.eLast, E.® d i ;

Or { ee(E) an jt1e® :
.= { E.eID | emp10Y (€) and E.eTH {

0 managers : p | employe€ =l :
v aches := { E.8I ches(T)_1i <*Nan? 3
coT | managers(T)_or €% .eTitl :

{ E) '

.= { E.eID | emplaz:::T) } i

o- ma:agggzr_;e o= { T.eID It‘ca enCourse |
taken) nd no

{ T | managers(T) 2

c.cIp | employ

{ E.elD,

u |
ple Re'a“"nal(
i

\
Uple Vatighy,

Expressive Power 55

Query Qo:

v { E | employee(E) and E.eSalary > 100000 };

The tuple variable E is the only variable that appears in the TRC formula. This
variable is a free or global variable, since it is not quantified within the TRC
formula. The atom employee (E) binds the variable Eto a tuple in the emp loyee
relation. The atom E.eSalary > 100000 then checks whether the employee’s
salary is greater than 100000. The output schema of the TRC expression consists
of the attributes associated with the tuple variable E, which are the attributes
of the table employee (eID, elast, eFirst, eTitle, eSalary),

Query Qy:

v { E.eLast, E.eFirst, E.eTitle | employee(E)};

Dot notation projects the desired attributes of the tuple variable E that ranges
over the employee table.

Query Qu:

v managers :=
{ E.eID | employee(E) and E.eTitle=‘Manager’ };
coaches :=
{ E.eID | employee(E) and E.eTitle=‘Coach’ };
{ T | managers(T) or coaches(T) };

The first expression finds the identification number of employees who are man-
agers, using the global or free tuple variable E to range over the employee table,
and then the value of the eTit1e determines whether the employee is a manag-
er. Similarly, the second expression finds the identification number of employ-
ees who are coaches. The third expression unions the compatible intermediate
tables managers or coaches. The tuple variable T is free in the union TRC ex-
pression, getting its bindings from the operands of the disjunction. Therefore,
the disjuncts of a valid disjunctive expression must have the same free variables.
Although the previous specification of the query used the general tem-
plate for expressing a union in TRC, the query can be specified in one step:
v { E.eID | employee(E) and
(E.eTitle = ‘Manager’ or E.eTitle = ‘Coach’) };

Query Q_:

4 managers :=

{ E.eID | employee(E) and E.eTitle=‘Manager’ };
takenCourse := { T.eID | takes(T) }; i
{ T | managers(T) and not takenCourse(T) }j

MG “E|at|

- ble managers contains th ona Calculu;
i iate table ma ans the eIp
first intermedia :) of e

’gftitle wanager. The second intermediate tab.le takenCOUPgO}'ees ha
eID of employees that have taken a course, as given by the oy :Omains lhE
answer to the query returns the set of tuples T such that T fOrmtab]es'The
the managers table and does not form a tuplt_a In the take“COUrsSea tup1ein
alternative specification of the query can be given as a single ok tabe. ¥
v { E.eID | employee(E) and E.eTitle='Manager, o
not (exists T) (takes(T) and T.eID=E,elp) };

In this version of the query, the tuple variable E is a global variab

s le, ang1;
local variable, defined only within the scope of the negated fo Ty

tmula,
Query Ox:
v { E.elD, C.cID | employee(E) and trainingCourse(c) }:

The simplifying assumption for the cartc?sian product operator in r'elaﬁon?l
algebra requires that the operand relations do not have any attributesi
common. In the TRC language, the same asspmptlon for the result (:i.:
cartesian product must hold. The rem_ﬂtmg relation schema mustr:o:ecs(:x:1 :ml
duplicate attribute names. The specification Qf the querzf lee,; in?rR o
cartesian product of the employee an_d trainingCourse ?vel arespeciﬁﬁ
eID and cID attributes of the tuple vanable§ EandC, respeocflt he)::,o ncspondiﬂi
as the result of the query to be consistent with the schema

relational algebra example.

4.2.2 Additional Operators

NG e
EmpLOYEE TRAINDS

X), Wi

Table 4.3 summarizes the illustrative examples ozeiig;eal e (0%,
prise using the additional binary operators of relati

ueries. .
TABLE 43 TRC summary of additional EmmﬁW ‘,

vTRC

Query

_yanager’ }i

E.eTitle
2n managers := { E.eID | employee(E) and
takenCourse

T} !

:= { T.eID | takes() -

{ T | managers(T) and takencourse(T) }i B eID:A.a‘-eadI |
and E- ?

Oeap { E, A | employee(E) and technologyAFea(A) ;
Qo { C.cTitle, T.tYear, T.tMonth, T.tDa:ndl c.cID=T'CID b
trainingCourse(C) and takes(T) q

Section 4.2 Expressive Power

57
are frequently used combinations of the fundamental
: : . . operators. The djvisi -
binary operator is not given in the table but delegated to a more detailegl‘é{swn (+)
later in this section. iscussion

Query QOn:

v managers :=
{ E.eID | employee(E) and E.eTitle=
takenCourse := { T.eID | takes(T) };
{ T | managers(T) and takenCourse(T) };

‘Manager’ };

The intersection operation is achieved by using the same tuple variable name in

both atoms referencing the operand relations. The query can also be specified
in one step:

v { E.eID | employee(E) and E.eTitle=‘Manager’ and

(exists T) (takes(T) and T.eID=E.eID) };

In this version of the query, the tuple variable E is a global variable, and T is a
local variable defined only within the scope of the existential formula.

Query Q.o

v { E, A | employee(E) and technologyArea(A) and

E.eID=A.alLeadlD };

The global variables E and A range over the tables to be joined. The join
condition E.eID=A.aLeadID joins the employee and technologyArea tables
such that the employee e1D is equal to the aLeadID of the technology area.

Query Q.
v { C.cTitle, T.tYear, T.tMonth, T.tDay |
trainingCourse(C) and takes(T) and C.cID=T.cID };

In DRC, using the same domain variable name in the positions that are to
be joined results in a natural join. Since there is no shortcut available for the

natural join in TRC, the attributes to be joined must be done so explicitly (e.g.,
C.cID=T.cID).

Division. Division is a complex binary relational algebra operator that finds
those values in the first operand relation that are re.la'te:d to all of the ¥al';lle:
in the second operand relation. The same abstract division example (af; aand
-+ bTable), where the schemas of the operand relations are abrat{le-(ua'su)ation
bTable(b), demonstrates the expression of division in TRE: D

il

s s 4 o N TRC ye G,
quantification, along with their corresponding tnsxltrllx univefsal 4

The abstract division example inclugeg 5 tableg 2 anq by
vision, provided that the a valye i« ; na L

;) abTable U in the Tegy};
ues, if B is a tuple in the bTable, (he, the and for gy

all o

Po;
abTable: are re]s::::;];u
'k

{ T.a | abTable(T) ang (forall)

_ (bTab
(exists AB) (abTable(AB) sl

and AB.a=T) inplies

@ and AB-b=B.b) ¥

Why does the TRC specification oo

k more complicateq than ;
. . . n it
specification in the DRC language? s Oltepagy

{ A | abTable(A, _) and (forall B) (bTable(B) implies
abTable(A,B)) };

This DRC specification is utilizing shortcuts of the DRC language. Wit
shortcut, the DRC specification more closely resembles the TRC:

(bTable(B) implies

{ A | abTable(A, .) and (forall B) =A and B1=8)) i

(exists A1,B1) (abTable(A1,B1) and Al

. ' . om'
Since he impl d in this versxonl :
. t formall define ; o iyl
. : P ies operator 1S o . y 4 ot
1' llt qUI alent speciﬁcation using not po
the loglca y € v
G B Table(B) °E I
able(T d a=T.

J {T.a| abT AB) (abTable(AB) an

f
exists formul? “’“s::ﬁ

(o pot o
i
o that 555
f divisio? (tili]viSion’ P";W!
oth ree Gxistsab- i

€

° e abTabl e

forall
le. The d
ing tmth t'ab B values that

nd
ws the correspo ncluding those

Table 4.4 sho f the variable B i

for all values ©

e bTable.
th Consider alo

.] “
tial quantxﬁcat.lon. AabTable o
the a value is in the

ted to
ig not rela

: ble and s

in the bTa

3 [8)
ification
ivalent spect’ r
: equival in the
g1ca11}",alue js inclu d :
2 d it is 0O i
the a V2 i
and

(ex3%H g
nd not an
abTable(;;)a(abTable(

v { T.2 (exists

i 1 b (=
hiS Cxposillon .Closie .
- 110w its deran[on

Section 4.2 Expressive Power

59
. TABLE 4.4 TRC division: universal truth table,
abTable(T) b

not bTable(B) (exists AB) not bTable(B) forall B
or {exists AB)

(a1) b1 F T T
b2 F T T T
b3 T F T

(a2) b1 F F F
b2 F T T F
b3 T F 4

(a3) b1 F T T
b2 F T T T
b3 T T T

This logically equivalent existential specification can be derived from the
universal specification using the following logical equivalences;

¢ Given the universal specification

e

v { T.a| abTable(T) and (forall B) (not bTable(B) or
(exists AB) (abTable(AB) and AB.a=T.a and AB.b=B.b)) ¥

* Apply the logical equivalence: (forall D) F(D)
F(D)

it

not (exists D) not

v {T.a| abTable(T) and not (exists B) not (not bTable(B) or
(exists AB) (abTable(AB) and AB.a=T.a and AB.b=B.b)) };

e Apply DeMorgan’s Law: not (p or g) = not p and not q

vV {T.a| abTable(T) and not (exists B) (bTable(B) and
not (exists AB) (abTable(AB) and AB.a=T.a
and AB.b=B.b)) };

Table 4.5 shows the corresponding truth table.

423 Safety

By illustrating how the Operators of relational algebra can be expressed in TRC,
the previous examples have demonstrated the relational completeness of TRC. Al-
though the result of 3 relational algebra expression is finite, not all TRC expressions
produce a finite result. Consider the TRC expression that attempts to find employees -
Who do not lead a technology area, and assume that there exists an intermediate ‘
table 1eads containing the IDs of the employees that lead technology areas:

{E | not leads(E) }

4.3 EXAMPLE QUERIES

Chapter 4

Tuple Relational
TABLE 45 TRCdivision: existential truth table. C

al(%
abTable(T) b bTable(B) not (exists AB) m
not (existg AB) not (exis‘sii
T F
(a1) b1 \
. b2 T F F
b3 F T F T
b3 F T F F
(a3) b1 T F F s
b2 T F F .
b3 F F F
—

There are infinitely many tuple values that are not in the leads table, Tog
those employees who do not lead a technology area, first limit the tuple yay
E to values of the employee table and then check whether the employee IDvj
appears in the leads table:

J { E | employee(E) and not (exists L)
(leads (L) and L.eID=E.eID) };

) s iting (either dired!
: finite result by limiting (eitherd
C expression guarantees a ; in a positics!
'ndireﬁf}?}f ett}:aRvalueI; of a tuple variable ('11;) I:Y lt:\ ;{E::;?;gz;al compleos!
1 les illustra i
TRAINING €xXamp ; be realized 1%
(r(T)). The EMPLOYER fe TRC expressions can aretd
e are safe. Only sa d safe DRC)
ﬁ;e EZC Ilahi%:faogre relational algebra and safe TRC (an |
algebra. ;

in expressive power.

YEE expre® -,
The example queries OVer dtltl; EZLP‘(;‘{’ ho TRC langueg® to iog 1o limi*y
t queries an e
types of relevan

tion 0%
¢ the conver relatio®
Similar to DRC, the TRC language examples - . o
1 b

ing O o= i
. readlng 10 rela O‘d
: f-to-right T% = ow ies 0
) : enced 1n 2 lett-t0 essive P uer!
before its v;l.ue ° ::: ?II"RC is equivalent 10 expr efores qquerlesaf‘l
expression. Since §

tion. s uys‘!
t aggregall " for thes® * oo’y
s not support €& tions
g chll cCr:;":vely. The inventive solu a
must be answer o : v
in concept to the DRC solutio ory Q4 retri o o i umater m‘w 19'
two different technology areas, 4 fin A
in more than one technology area.

ve a
i ace employees that d,,.. ~¢ finds t

=

53

k=
Tl 2ém

Section 4.3 Example Queries 2
least one course in the database technology area and have taken al] database courses

The verification of taking at least one database course is required to produce correct
results when the dbCourse table is empty.

¥YQ1: What training courses are offered in the ‘Database’ technology area?
(cID, cTitle, cHours)
dbCourse := :
{ T.cID, T.cTitle, T.cHours | trainingCourse(T) and (exists A)

(technologyArea(A) and A.alID = T.arealD and
A.aTitle = ‘Database’) };

vYQ2: Which employees have taken a training course offered in the ‘Database’
technology area?

(eID, elLast, eFirst, eTitle)

dbEmployee :=

{ E.eID, E.eLast, E.eFirst, E.eTitle | employee(E) and

(exists T,D) (takes(T) and dbCourse(D) and
T.eID=E.elID and T.cID=D.cID) };

vYQ3: Which employees have not taken any training courses?

(eID, elLast, eFirst, eTitle)

{ E.eID, E.elast, E.eFirst, E.eTitle | employee(E) and
not (exists T) (takes(T) and T.eID=E.eID) };

vYQ4: Which employees took courses in more than one technology area?

(eID, eLast, eFirst, eTitle)

{ E.eID, E.elLast, E.eFirst, E.eTitle |
employee(E) and (exists T1,T2,C1,C2)
(takes(T1) and Ti1.eID=E.eID and
takes(T2) and T2.eID=E.eID and
trainingCourse(C1) and T1.¢ID=C1.cID and
trainingCourse(G2) and T2.cID=C2.c¢ID and
C1.arealD <> C2.arealD) };

g BRI
s

Clhigplel & luple RE|ationa| Gl
Aoy

62

oyees have the minimum salary?
p

. Which em
Y05 eTitle, eSalary)

(e1D, eLasts gFirst,

e(E) and
{E :‘oimlzzi\]{.:t; 5) (employee(s) and S.eSalary < E.eSalary))

JQ6: Which employees took all of the training courses offered in the

‘Datahyg
technology area?

(eID, elast, eFirst, eTitle)

{ E.elD, E.elast E.eFirst, E.eTitle | employee(E) and
.] . 3 _
(exists B) (dbEmployee(B) and B.eID=E.eID) and
i d
not (exists D) (dbCourse(D) an
not (exists T) (takes(T) and T.eID=E.elID and
T.cID=D.cID)) };

4.4 SUMMARY

: . i
TRC is a relationally complete language that declaratively spec1f.ie§l'2;eo?iﬁgem

of the data to be retrieved, not how to retrieve the data. The varia o

language range over tuples of relations, and the names of atmbu{;e:yntax forms
the tuple are referenced using dot notation. The TRC by-nam ‘
foundation of SQL, which is described in the next chapter.

DISCUSSION

N k, offered Dy’
Some may prefer the TRC by-name syntax over the posmonal 31?; : red i
theoretical DRC. However, TRC appears somewhat verbO_Sets at the th'rRC
DRC. DRC offers pragmatic shortcuts for equality Constralft‘ available bo g
such as natural joins and domain constants. The only shortcu mpatible g |
and DRC is the ability to use the same variable names in €0
such as union, difference, and intersection.

EXERCISES ol
a query mleow 4"‘;’
: n ne¥
Don't forget thay you may use intermediate tables to break d‘;yc‘:'se Pfe"‘g”rsc Pl
steps. Since TRC and DRC are similar languages, the first e ment of TR .
‘t’: er the EMPLOYEE TRAINING schema to encourage the develop

al are not based op, existing DRC solutions. .

Section 4.4 Summary

63
v Use the WinRDBI education

y : ‘ al tool to check the answers to these marked exercises.
4.1 Answer the following queries in TRC over the EMPLOYEE TRAINING schema:

employee(elD, elast, eFirst, eTit
technologyArea(alD, aTitle, aUAL, aleadID)
trainingCour‘se(@, cTitle, cHours, arealD)
takes(eID, cID, tYear, tMonth, tDay)

le, eSalary)

(a) Which employees took training courses in a given month?

Look at the database instance and choose a month and

year that will not yield an
empty result:

(eID, eLast, eFirst, eTitle)

(b) Which employees have not taken all of the training courses in the ‘Database’
technology area?

(eID, eLast, eFirst, eTitle)

(c) Which employee leads have taken more than one trainin

i g course in the technology
area that they lead?

(eID, elast, eFirst, eTitle)

(d) Which training courses in the ‘Database’ technology area have the maximum
number of hours?

(cID, cTitle, cHours)

(e) Which employees have taken all training courses offered in the year 20017

(eID, elast, eFirst, eTitle)

v42 Answer Exercise 3.1 in TRC. Do not translate the DRC solutions to TRC! Verify
that you obtained the same set of results on the same database instance for each
query. Compare your TRC solutions with your DRC solutions. Do you prefer one
relational calculus language to the other? Why?

¥4.3 Answer Exercise 2.1 in TRC. Verify your results and compare your solutions.

V4.4 Answer Exercise 2.2 in TRC. Verify your results and compare your solutions.

4.5 The most common mistake in constructing a division query in TRC is nj.he lack

of use of the implication within the universally quantified formula. Consider the
following specification of the division query:

ble(B) and
T.a | abTable(T) and (forall B) (bTa y
: (elxists AB) (abTable(AB) and AB.a=T.a and AB.b=8.b)) }

