(Ch 4) Network Layer

- **Describe the purpose of the Network layer (service Model) as compared to the Transport layer**
 - **Transport layer**: ensures that the protocols operated at this layer provide reliable end-to-end flow and error control (TCP, UDP). **Between two processes**
 - **Network layer**: controls routing of data from source to destination as well as assembling and dismantling of data packets. **Between two hosts**
 - transport segment from sending to receiving host.
 - on sending side: encapsulates segments into datagrams.
 - on receiving side: delivers segments to transport layer.

- **Difference between Forwarding and Routing**
 - **Forwarding**: moves packets from routers input to appropriate router output.
 - **Routing**: determine route taken by packets from source to destination.

- **Virtual Circuit networks (manner of forwarding etc)**
 - Connection-oriented service
○ Each packet carries VC Identifier
○ Every router on source-destination path maintains “state” for each passing connection.
○ Router resources may be allocated to VC (predictable behavior).
○ Contains:
 ■ path from source-destination.
 ■ VC numbers, one for each link along path.
 ■ entries in forwarding tables in routers along path.

- Datagram networks (manner of forwarding etc)
 ○ Connectionless-oriented service
 ○ Packets forwarded using destination host address
 ■ Forwarding table “Destination Address” divided into “ranges”
 ■ Longest Prefix Matching: use longest address prefix that matches destination address.

Datagram or VC network: why?

Internet (datagram)
- data exchange among computers
 ■ “elastic” service, no strict timing req.
- many link types
 ■ different characteristics
 ■ uniform service difficult
- “smart” end systems (computers)
 ■ can adapt, perform control, error recovery
 ■ *simple inside network, complexity at “edge”*

- What’s in a Router?
 ○ run routing algorithms/protocols (RIP, OSPF, BGP).

ATM (VC)
- evolved from telephony
- human conversation:
 ■ strict timing, reliability requirements
 ■ need for guaranteed service
- “dumb” end systems
 ■ telephones
 ■ *complexity inside network*
- forwarding datagrams from incoming to outgoing links.
- **Input ports**
 - given datagram destination lookup output port using forwarding table in input port memory “match + action”.
- **Output ports**
- **Switching fabric**: transfer packet from input buffer to appropriate output buffer.

- **Three types of switching fabrics**

- Memory: packets copied to systems memory (first generation routers), speed limited to memory bandwidth.
- Bus: shared bus, speed limited by bus bandwidth.
- Crossbar: fragmenting datagram into fixed length cells, switch cells through fabric.

- **Queuing**: if datagrams arrive faster than forwarding rate into switch fabric, queuing occurs.
 - Queuing delay & loss for both input & output buffer overflow.
 - Head of the Line Blocking: queued datagram at front of queue prevents others from moving forward.

- **Buffer-size**: \(\frac{(RTT \times \text{Link Capacity})}{\sqrt{N}}\) where \(N\) is the number of flows.

- **Datagram format**
- **Datagram fragmentation**
 - network links have MTU (maximum transfer size) thus large datagrams must be "fragmented" in order to be sent and are then reassembled at final location.
 - IP Header bits used to determine order of fragments.

- **Addressing in IPv4**
 - IP addresses associated with each interface, normally either ethernet or wireless.
 - Subnets: device interfaces with same subnet portion of IP address
 - devices in same subnet can physically reach each other without intervening router.

- **Dotted decimal notation**
 - "xxxx.xxxx.xxxx.xxxx" dots separate the octets of an IP address. IPv4 are 32 bit addresses split up into 4-octettes.

- **Classless InterDomain Routing (CIDR)**
 - subnet portion of IP address of arbitrary length.
● **Hierarchical addressing**: A common form of location identification that is made up of several levels.
 ○ allows efficient advertisement of routing information.
 ○ Classes A, B, C, D
 ○ ICANN Internet Corporation for Assigned Names & Numbers responsible for allocating addresses, managing DNS, assigns domain names, and resolves disputes.

● **Dynamic Host Configuration Protocol (DHCP)**
 ○ allow host to dynamically obtain IP address from Network Server when connection to network is made.
 ○ Host broadcasts “DHCP Discover” message
 ○ DHCP Server responds with “DHCP Offer” message
 ○ Hosts request IP address “DHCP request” message
 ○ DHCP Server sends address: ‘DHCP ACK” message
 ○ Can return more than just allocated IP address of subnet (address of first-hop router, name/ip of DNS, network mask)

● **Network Address Translatoin (NAT):**
 ○ local network uses just one IP address as far as outside world is concerned.
 ○ devices inside local network are not explicitly addressable, visible by outside world.
implementation: NAT router must:

- **outgoing datagrams:** replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #) . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr

- **remember (in NAT translation table)** every (source IP address, port #) to (NAT IP address, new port #) translation pair

- **incoming datagrams:** replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

 - 16-bit port-number field, thus supports up to 60k connections with single LAN-side address.
 - NAT is CONTROVERSIAL!
 - routers should only support up to layer-3, thus violates end-to-end argument.
 - Address shortage should be resolved by IPv6 implementation.
 - Traversal Problem: client wants to connect to local NAT address.
 - Solution #1: statically configure NAT to forward incoming connection requests at given port to server.
 - Solution #2: Universal Plug-n-Play (UPnP) Internet Gateway Device (IGD) Protocol, allows NAT host to:
 - learn public IP address.
 - add/remove port mappings
 - Solution #3: Relaying

- **Internet Control Message Protocol (ICMP)**
 - used by hosts & routers to communicate network-level information.
- error reporting: unreachable host, network port, protocol.
- echo request/reply
 - ICMP message = type, code, followed by first 8 bits of datagram causing error.

- **IPv6**
 - 128-bit address
 - solution to IPv4 addresses being completely allocated.
 - fixed-length 40-byte header
 - NO fragmentation allowed
 - checksum removed to reduce processing time at each hop.
 - Transition from IPv4 to IPv6 accomplished by
 - Tunneling: IPv6 datagram carried as payload in IPv4 datagram among routers.

- **Routing Algorithms**
 - **Link State (be able to do this one)**
 - Global information, all routers have complete topology (know location/costs of entire topology).
 - Dijkstra’s Algorithm
 - accomplished via link state broadcast.
 - $O(n^2)$
 - **Distance Vector**
 - Decentralized information, router knows physically connected neighbors, link costs to neighbors.
 - “Bellman-Ford”

$$D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\} \text{ for each node } y \in N$$

- Which is better?
Comparison of LS and DV algorithms

message complexity
- **LS:** with n nodes, E links, O(nE) msgs sent
- **DV:** exchange between neighbors only
 - convergence time varies

speed of convergence
- **LS:** O(n^2) algorithm requires O(nE) msgs
 - may have oscillations
- **DV:** convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?
- **LS:**
 - node can advertise incorrect link cost
 - each node computes only its own table
- **DV:**
 - DV node can advertise incorrect path cost
 - each node’s table used by others
 - error propagate thru network

- **Hierarchical routing**
 - can’t store all destinations in routing tables!
 - routing table exchange would swamp links.
 - administrative autonomy
 - each network admin may control routing in their network.
 - aggregate routers into regions, “autonomous systems”

- **Autonomous Systems**
 - Routers in same AS run same routing protocol.
 - “intra-AS routing,” sets entries for internal destinations.
 - Also known as Interior Gateway Protocols (IGP).
 - “Inter-AS routing,” sets entries for external destinations.
Also known as Border Gateway Protocols (BGP).

- “Hot Potato Routing” sends packet to closest of two routers.
- Routing Information Protocol (RIP)
 - utilizes Distance Vector algorithm.
 - Link Failure/Recovery: if no advertisement (response) heard after 180sec, neighbor/link declared dead.
 - route invalidated
 - neighbors are notified
 - neighbors in turn send advertisements if tables have changed.
 - poison reverse used to prevent ping-pong loops (infinite distance = 16 hops).
 - RIP routing tables managed by application-level process called route-d (daemons).

- Open Shortest Path First (OSPF)
 - utilizes Link State Algorithm
 - route computation using Dijkstra’s algorithm
 - advertisement carries one entry per neighbor.
 - advertisements flooded to entire AS.
 - carried in OSPF messages directly over IP rather than TCP or UDP.
 - all OSPF messages authenticated.
 - multiple same-cost paths allowed whereas RIP contains a single path.
 - Integrated uni- and multicast support.
 - Hierarchical OSPF
 - Two-Level Hierarchy: local area, backbone
 - advertisements only in area.
- each node has detailed area topology
 - Area Border Routers: “summarize” distances to nets in own area, advertise to other Area Border Routers.
 - Backbone Routers: run OSPF routing limited to backbone.
 - Boundary Routers: connect to other AS’s.

- **Border Gateway Protocol (BGP)**
 - the de-facto, inter-domain routing protocol.
 - “glue that holds the internet together”
 - Provides each AS means to:
 - eBGP: obtain subnet reachability information from neighboring AS’s.
 - iBGP: propagate reachability information to all AS-internal routers.
 - ALLOWS SUBNET TO ADVERTISE ITS EXISTENCE TO REST OF INTERNET!
 - BGP Session: two BGP routers exchange BGP messages.
 - Route = prefix + attributes
 - AS-PATH: contains AS’s through which prefix advertisement has passed
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS
 - Gateway router receiving advertisement uses import policy to accept/reject ad.
 - policy-based routing
 - Route selection based on:
 - policy decision
 - shortest AS-PATH
 - closest NEXT-HOP router: hot-potato routing
 - additional criteria
 - BGP messages exchanged between peers over TCP
 - OPEN: opens TCP connection to peer and authenticates sender
■ UPDATE: advertises new path.
■ KEEPALIVE: keeps connection alive in absence of UPDATE; also ACK’s open request.
■ NOTIFICATION: reports errors in previous connection; also closes connection.

Why different Intra-, Inter-AS routing?

policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed

scale:

- hierarchical routing saves table size, reduced update traffic

performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

- **Broadcast routing:** deliver packet from source to all other nodes.
 - source duplication is inefficient.
 - Flooding: when node receives packet, broadcast packet, send copy to all neighbors.
 - Controlled Flooding: node only broadcasts packet if it hasn’t broadcasted before.
 - Spanning Tree: no redundant packets received by any node.

- **Multicast routing**
 - goal: find a tree (or trees) connecting routers having multicast group members.
 - tree: not all paths between routers used.
 - shared-tree: same tree used by all group members.
- minimal spanning (Steiner): minimum cost tree connecting all routers with attached group members.
 - not used in practice, computationally complex.
- center-based trees: single delivery tree shared by all.
 - one router defined as "center"
 - source-based: different tree from each sender to receivers.
 - shortest path tree
 - Dijkstra’s Alg.
 - reverse path forwarding
 - bad choice with asymmetric links.
 - Tunneling: mcast datagram encapsulated within "normal" datagram, similar to IPv6 within IPv4.
- **(Ch 5) Link Layer**
 - has responsibility of transferring datagram from one node to physically adjacent nodes via a "link"
 - Link Layer services:
 - **Framing (link access):**
 - encapsulates datagram into frame, adding header and trailer.
 - "MAC" address used in frame headers to identify source/destination.
 - **Link access MAC protocol:** encompassed in "framing"
 - **Reliable delivery**
 - seldom used on low bit-error link.
 - wireless links have high error rate.
 - **Flow control:** pacing between adjacent sending and receiving nodes.
 - **Error detection**
 - errors caused by attenuation, noise.
 - receiver detects presence of errors.
 - signals sender for retransmission or drops frame.
- **Error Correction**: receiver identifies and corrects bit-errors without resorting to retransmission.
- **Half/Full Duplex**
 - **Half**: nodes at both ends of link can transmit but not concurrently.
 - **Full**: nodes at both ends of link can transmit concurrently.
- **Link layer implementation**
 - in every hosts “adaptor” (Network Interface Card) or on a chip.
 - Ethernet Card, 802.11 card, Ethernet Chipset
 - combination of hardware/software/firmware.
- **Checksum**: detect errors in transmitted packet, TRANSPORT LAYER ONLY!

goal: detect “errors” (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

sender:
- treat segment contents as sequence of 16-bit integers
- checksum: addition (l’s complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:
- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO - error detected
 - YES - no error detected. *But maybe errors nonetheless?*

- **Cyclic Redundancy Check (CRC):**
- more powerful error-detection coding
- view data bits, D, as a binary number
- choose $r+1$ bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - $<D,R>$ exactly divisible by G (modulo 2)
 - receiver knows G, divides $<D,R>$ by G. If non-zero remainder: error detected!
 - can detect all burst errors less than $r+1$ bits
- widely used in practice (Ethernet, 802.11 WiFi, ATM)

\[D \times 2^r \text{ XOR } R \]

- **Parity**: the use of parity bits to check that data has been transmitted accurately.
Multiple Access Links

- **Two types**
 - Point-to-Poing (PPP for dial-up or point-to-point between Ethernet switch & host).
 - Broadcast (shared wire or medium)
 - old-fashioned ethernet
 - 802.11 wireless LAN
 - Interference: 2+ simultaneous transmissions by node
 - Collision if node receives 2+ signals at the same time.

Multiple Access Protocols:

- distributed algorithm that determines how nodes share a channel (i.e. decide when node can transmit).
- communication about channel sharing must use channel itself.
○ **Channel partitioning**: divide channel into ‘pieces’ allocating 'pieces' to respective nodes for exclusive use.

 ○
 ■ TDMA: Time Division Multiple Access
 ■ Each station gets fixed length slot in each round.

 ■ FDMA: Frequency Division Multiple Access
 ■ channel spectrum divided into frequency bands, each station assigned a specific frequency band.

○ **Random access**: channel not divided, allows collisions and recovers from them.

 ○
 ■ when node has packet to transfer it transmits at full channel data rate.

 ■ Random Access MAC protocol determines how to handle collision.

○ **Taking turns**: nodes take turns but larger datagrams take longer turns.

 ■ Taking Turn Protocols:
 ■ Polling: “master” node invites “slave” nodes to transmit in turns.
 ■ Concerns: polling overhead, latency, single point (master) of failure.

 ■ Token Passing: control “token” passed from one node to another sequentially.
 ■ Concerns: token overhead, latency, single point (token) of failure.

○ **Random Access Protocols**
 ■ (Slotted) ALOHA
assumptions:
- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:
- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

- At Best: channel used for useful transmissions %37 of the time.
- Carrier Sense Multiple Access (CSMA): “listen before idle”
 - if channel sensed is idle, transmit entire frame, otherwise defer frame.
 - Human analogy: “don’t interrupt others!”
- Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
 - colliding transmissions aborted reducing channel wastage.
 - easy in wired LANs: measure signal strengths, compare transmitted & received signals.
 - Human analogy: “the polite conversationlist”
- Algorithm
 - Receives datagram from network layer, creates frame.
 - If NIC senses channel idle, sends frame otherwise it waits until channel is idle.
If NIC transmits entire frame without error then its done.

If NIC senses another transmission while transmitting, aborts and sends jam signal.

NIC then enters binary backoff. Longer back off interval with more collisions!

Summary of MAC protocols

- **channel partitioning**, by time, frequency or code
 - Time Division, Frequency Division

- **random access** (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11

- **taking turns**
 - polling from central site, token passing
 - bluetooth, FDDI, token ring

- **Link layer addressing**: (MAC or LAN or Physical or Ethernet address)
 - **MAC addresses**
 - used locally to get frame from one interface to another physically connected interface.
 - 48-bit address burned on NIC ROM.
 - Unique for every interface, similar to social security numbers.
- **Address Resolution Protocol (ARP):** determines interfaces MAC address with known IP address.
 - **ARP Table:** each IP node has table containing: IP/MAC address mappings & TTL.
 - If A wants to send B a datagram and B is not in A’s ARP table then A broadcasts an ARP query packet containing B’s IP address.
- **Ethernet:** dominant wired LAN technology.
 - **Bus:** popular through 90’s, all nodes in same collision domain.
 - **Star:** prevails today, active switch in center; each spoke runs separate Ethernet protocol, no collision.
 - **Frame:** sending adapter encapsulates IP datagram in Ethernet Frame.

<table>
<thead>
<tr>
<th>preamble</th>
<th>dest address</th>
<th>source address</th>
<th>data (payload)</th>
<th>CRC</th>
</tr>
</thead>
</table>

- **Preamble:** 7 bytes with pattern “10101010” followed by one byte with pattern “10101011” used to synchronize sender/receiver clock rates.
- **Address:** 6-byte source/destination MAC addresses
 - if adapter receives frame with matching destination MAC address or broadcast address it passes data in frame to network layer protocol (ARP).
- **Type:** indicates higher layer protocol
- **Cyclic redundancy check (CRC):** at receiver; error detected? Then frame is dropped.
- **CONNECTIONLESS**
- **UNRELIABLE:** No ACKS or NACKS between NICs.
- **Switches:**
 - store/forwards ethernet frames.
- examine incoming frames MAC address and selectively forward frame to one or more outgoing links.
- Transparent: hosts are unaware of presence of switches.
- Plug-n-Play: switches do not need to be configured.
- Hosts have dedicated-direct connection to switch.
- switches buffer packets.
- Every switch has a switch-table containing routing table.
- Forwarding & Filtering:

Switch: frame filtering/forwarding

when frame received at switch:

1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination
 then {
 if destination on segment from which frame arrived
 then drop frame
 else forward frame on interface indicated by entry
 }
else flood /* forward on all interfaces except arriving interface */

- **Self-Learning**: switches update switch table with sender/location every incoming frame.
- **PPP**: type of Point-to-Point access link
 - for dial-up access.
Switches vs. routers

both are store-and-forward:

- **routers**: network-layer devices (examine network-layer headers)
- **switches**: link-layer devices (examine link-layer headers)

both have forwarding tables:

- **routers**: compute tables using routing algorithms, IP addresses
- **switches**: learn forwarding table using flooding, learning, MAC addresses