Hash, DH and RSA

Short Version

Chun-Jen Chung

Arizona State University

Outline

- Background
- Hash Functions
- Public key cryptography (PKC)
- DH
- RSA
- Summary

Background

Crypto algorithms review

Key management

Introduction to Hash Functions

Error checking in frames ...

Hashing is very similar ...

Hash Algorithms

Message of arbitrary length

- Also known as
- Hash functions
- Message digests
- One-way transformations
- One-way functions
- Length of $H(m)$ much shorter than length of m
- Usually fixed lengths: 128 or 160 bits
- Example algorithms
- MD5 (Message-Digest) - 128 bit output
- SHA-1 (secure hash algorithm) : 160bit output
- SHA-2: 256/224, 512/384

Hash Algorithms (contd)

Hash value 20 bytes (160 bits)

Hash value 20 bytes Hash value 20 bytes

Applications of Hash Functions

- Primary application
- Generate/verify digital signature

Send

Receive

Problem of Symmetric key Crypto

Problem of Symmetric key Crypto

- Sharing key in Secret key cryptosystem
- Given complete graph with n nodes (entities), ${ }_{n} C_{2}=n(n-1) / 2$ pairs secret keys are required.
- Ex.) If $n=100,99 \times 50=4,950$ keys
- Problem: managing large number of secret keys is difficult. (e.g., all ASU students? Keys are lost? add new members? remove new member)

Q: how many different secret keys for five students?
A: Secret keys are required between
(a,b), (a, c), (a,d), (a,e), (b,c),
(b,d), (b,e) (c,d), (c,e), (d,e)

DLP (Discrete logarithm problem)

Polymaniapobleme	$\begin{aligned} & g^{x}=Y \rightarrow x=\log _{g} Y \\ & \text { e.g., } 10^{x}=10,000,000,000: x=10 \end{aligned}$
	$\begin{aligned} & g^{x} \bmod p=Y \\ & \text { e.g., } 10^{x} \bmod 19=9: \quad x=10 \end{aligned}$

Q: how difficult?

An example

- Q: $7^{x} \bmod 13=8, x=$?
- A:
- $\mathrm{x}=0 \rightarrow 7^{0} \bmod 13=1$
- $\mathrm{x}=1 \rightarrow 7^{1} \bmod 13=7$
- $\mathrm{x}=2 \rightarrow 7^{2} \bmod 13=10$
- $\mathrm{x}=3 \rightarrow 7^{3} \bmod 13=5$
- $\mathrm{x}=4 \rightarrow 7^{4} \bmod 13=9$
- $\mathrm{x}=5 \rightarrow 7^{5} \bmod 13=11$
- $\mathrm{x}=6 \rightarrow 7^{6} \bmod 13=12$
- $\mathrm{x}=7 \rightarrow 7^{7} \bmod 13=6$
- $\mathrm{x}=8 \rightarrow 7^{8} \bmod 13=3$
- $\mathrm{x}=9 \rightarrow 7^{9} \bmod 13=8$

How difficult??

Brute Force:
It would take p steps at least.
What if prime p is a large number with at least 512 bits?

P \& NP problem

- P problem (Polynomial problem):
- fast solutions exist
- NP problem (Nondeterministic Polynomial problem):
- Fast solutions do not exist.
- As input increases, time to solve the problem increases exponentially
- But validation (Yes/No) of the answer can be done quickly
- NP-complete problem:
- Most hard problem among NP problems.

DLP (Discrete logarithm problem)

- Problem:
- Given g, y, and prime p, find an integer x, if any, such that $y=g^{x} \bmod p$

$$
\text { Given } g, x, p \xrightarrow{\text { easy }} \mathrm{y}=g^{x} \bmod p
$$

- Application:
- Used to construct Diffie-Hellman \& ElGamal-type public systems: DH, DSA (Digital Signature Algorithm),

Diffie and Hellman key exchange

Diffie and Hellman (DH) key exchange

- Diffie-Hellman is a public key distribution scheme
- First public-key type scheme, proposed in 1976.

Whitfield Diffie

Martin Hellman

Diffie, W., and Hellman, M. New directions in cryptography. IEEE Trans. Inform. Theory IT-22, (Nov. 1976), 644-654.

DH Applications

- DH is currently used in many protocols, namely:
- Internet Protocol Security (IPSec)
o Internet Key Exchange (IKE)
- Secure Sockets Layer (SSL)/Transport Layer Security (TLS)
o Key agreement; in conjunction with DES (40-bit key) or 3-DES (128-bit key)
- Secure Shell (SSH)
- Public Key Infrastructure (PKI)

HTTP	FTP	SMTP
TCP		
IPsec		
IP		

At the network approach

HTTP	FTP	SMTP
SSL/TLS		
TCP		
IP		

At the transport layer

At the application layer

DH key agreement protocol

- Allows two users to exchange a secret key
- Requires no prior secrets
- Real-time over an untrusted network
- Based on the difficulty of computing discrete logarithms of large numbers.
- Requires two large numbers:
- p: one prime
- g : a primitive root of p (or a base), e.g: 3 is a primitive root modulo 7 , why?
- x: a secret key
g is a generator of a group G if every element in G can be expressed as the product of finitely many powers of g.

$$
y=g^{x} \bmod p
$$

DH Key Exchange Protocol

$$
F=\{1,2,3, \ldots, p-1\}
$$

(1) Pick secret, random a from F

(2) $A=g^{a} \bmod p$
(3) $B=g^{b} \bmod p$
(1) Pick secret, random b from F

(4) Compute

$$
\begin{aligned}
k=B^{a} \bmod p & =\left(g^{b}\right)^{a} \bmod p \\
& =g^{a b} \bmod p
\end{aligned}
$$

(4) Compute

$$
\begin{aligned}
k=A^{b} \bmod p & =\left(g^{a}\right)^{b} \bmod p \\
& =g^{a b} \bmod p
\end{aligned}
$$

Eve has to compute $g^{\text {ab }}$ from g^{a} and g^{b} without knowing a and $\mathrm{b} . .$. She faces the Discrete Logarithm Problem in finite fields

DH example

- Alice and Bob get public numbers
- $\mathrm{g}=2, \mathrm{p}=3$

$$
\begin{aligned}
& x=g^{a} \bmod p \\
& y=g^{p} \bmod p
\end{aligned}
$$

- Alice and Bob compute public values with their private key $a=4, b=3$ respectively
- $x=2^{4} \bmod 3=16 \bmod 3=1$
- $y=2^{3} \bmod 3=8 \bmod 3=2$
- Alice and Bob exchange public numbers Q: How?

DH for three parties

- How can three persons (Alice, Bob, Charlie) share a common secret key using DH key exchange?

MITM attack in DH Scheme (formal)

x_{a} : private
$Y_{a}=g^{x_{a}}$: public

${ }^{\text {Alice }} Y_{a}$

Adversary computes both session keys

$$
\begin{aligned}
& K_{b}=Y_{b}^{x_{c}}=g^{x_{c} x_{b}} \\
& K_{a}=Y_{a}^{x_{c}}=g^{x_{c} x_{a}}
\end{aligned}
$$

Bob computes the session key
$K_{b}=Y_{c}^{x_{b}}=g^{x_{c} x_{b}}$
Man-in-the middle attack comes from no authentication

Use authentication (e.g., signature)

A Possible Solution (ISO-9796)

A

A, g^{a}

$$
B, g^{b}, \operatorname{SIG}_{B}\left(g^{a}, g^{b}, A\right)
$$

$$
\operatorname{SIG}_{A}\left(g^{b}, 9^{a}, B\right)
$$

Thwarts the identity-misbinding attack by including the identity of the peer under the signature

The ISO defense

A

A: aha! B is talking to E not to me!
Note that E cannot produce $\mathrm{SIG}_{\mathrm{B}}\left(\mathrm{g}^{\mathrm{x}}, \mathrm{g}^{\mathrm{y}}, \mathrm{A}\right)$

- The ISO protocol thus avoids the misbinding attack

RSA

Public key cryptosystem

Public key: open to the public
Private key: key owner only

Public key: open to the public
Private key: key owner only
Also, combined with private key encryption algorithms

CSE468/598 Computer Network Security

Asymmetric key ciphers

IFP (Integer Factorization Problem)

- Problem: Given a composite number n, find its prime factors

- Application: Used to construct RSA-type public key cryptosystems

RSA

- 1st public key cryptosystem

Cf. DH - key exchange

- Believed to be secure if IFP (Integer Factorization Problem) is hard and worldwide standard for last 30 years.

RSA (Ron Rivest, Adi Shamir and Leonard Adleman)

R.L.Rivest, A.Shamir, L.Adleman, "A Method for Obtaining Digital Signatures and Public Key Cryptosystems", CACM,(Communications of the Association for Computing Machinery) Vol.21, No.2, pp.120-126,Feb, 1978

RSA encryption and decryption

How to generate the key pair?

CSE468/598 Computer Network Security

RSA encryption and decryption (cont'd)

$\mathrm{n}=\mathrm{pq}$ (p \& q: primes)
$e d=1 \bmod (p-1)(q-1)$

RSA Key generation

1. Select two large (1,024 bits or larger) primes p, q
2. Compute modulus $n=p q$ and
3. Compute $\varphi(n)=(p-1)(q-1) \quad \varphi$: Euler's Totient function
4. Pick an integer e relatively prime to $\varphi(n), \operatorname{gcd}(e$, $\varphi(n))=1 ; 1<e<\varphi(n)$ (or $Z^{*}{ }_{n}$ set of residues)
5. Compute d such that $e d=1 \bmod \varphi(n)$ using the Euclidean algorithm

- Public key (n, e) : public
- Private key (n, d) : keep secret

To understand RSA, we need to know

- Prime number
- GCD (great common divisor)
- Relatively prime
- Euclidean Algorithm
- Congruence
- Multiplicative reverse

However, we do not need you to get into them in this class. Only for your own interest!

Q: How secure RSA is?

RSA challenge

-One of the first description of RSA was in the paper.

- Martin Gardner: Mathematical games, Scientific American, 1977
- offered a $\$ 100$ prize for breaking the message
- and in this paper RSA inventors presented the following challenge.
- Decrypt the ciphertext:

```
968696137546 22061477 140922254355 882905759991 12457431
9874695120930816298225145708 35693147 66228839 89628013
391990551829945157815154
```

Encrypted using the RSA cryptosystem with
n (composite number): 114381625757888867669235779976146 612010218296721242362562561842935706935245733897 830597123513958705058989075147599290026879543541.
and with $e=9007 \quad C=M^{e} \bmod n$

RSA challenge (cont'd)

- It was solved in 1993-1994 by a large joint computer project
- More than 600 volunteers contributed CPU time from about 1,600 machines (two of which were fax machines) over six months.
- The coordination was done via the Internet and was one of the first such projects.
- By first factorizing n into one 64 -bit prime and one 65 -bit prime, and then computing the plaintext

$$
\begin{aligned}
p= & 32,769,132,993,266,709,549,961,988,190,834,461,413,177,642, \\
& 967,992,942,539,798,288,533 \\
q= & 3,490,529,510,847,650,949,147,849,619,903,898,133,417,764, \\
& 638,493,387,843,990,820,577
\end{aligned}
$$

- Plaintext: THE MAGIC WORDS ARE SQUEMISH OSSIFRAGE

Note that p, q use 1,024 bits or larger

	Symmetric	Asymmetric
Key relation	Enc. Key = Dec. key	Enc. Key \neq Dec. key
Encryption Key	Secret	Public, \{Private $\}$
Decryption Key	Secret	Private, \{Public\}
Algorithm	Classified/Open	Open
Example	DES (56 bits), AES	RSA (1024 bits)
Key Distribution	Required	Not required
Number of key	Many (Mbits/second)	Small (eg., kbits/second)
Performance	Fast	slow

Remember this

- Key distribution by Public key cipher
- Secret key is distributed by asymmetric (public) key cipher (e.g., DH, RSA)
- Data encryption by symmetric (private) key cipher
- The shared secret key (note: master key -> session key) is used to encrypt/decrypt the message
- Most security protocols use this idea

