

CSE 412/598
DATABASE MANAGEMENT

COURSE NOTES

6. QUERY OPTIMIZATION

Department of Computer Science & Engineering
Arizona State University

CSE 412/598 Query Optimization 2

QUERY TREE

a tree structure representing a relational algebra expression
leaf node - base relation
internal node - result of a relational algebra operation

Consider the following schema and query:
lives(PERSON,STREET,CITY,STATE,ZIP)
works(PERSON,COMPANY,SALARY,POSITION)
located(COMPANY,CCITY,CSTATE,CZIP)

Find the name and city of all people who earn more than 25,000 and
work for a company located in the state of NY.
 PERSON, CITY  SALARY>25,000  CSTATE=’NY’ ((lives works) located)

CSE 412/598 Query Optimization 3

QUERY TREE EXAMPLE

 PERSON, CITY  SALARY>25,000  CSTATE=’NY’ ((lives works) located)

CSE 412/598 Query Optimization 4

QUERY OPTIMIZATION

Transform the query as entered by the user into an equivalent query that
can be computed more efficiently.

Algebraic expressions may be transformed into equivalent expressions
using transformation rules that preserve equivalence. These
transformation rules are based on commutative properties of the
relational algebra operators and conditions on the expression to be
transformed.

CSE 412/598 Query Optimization 5

TRANSFORMATION RULES
 and 

1. Cascade of :
C1 and C2 and ... and Cn (R)  C1 (C2 (... (Cn (R)) ...))

2. Commutativity of :
C1 (C2 (R))  C2 (C1 (R))

3. Cascade of :
list1 (list2 (... (listn (R)) ...)) = list1(R)

4. Commuting  with : if C involves only attributes A1, ...,
An in the  list, they can be commuted.
A1, A2, ..., An (C (R))  C (A1, A2, ..., An (R))

CSE 412/598 Query Optimization 6

TRANSFORMATION RULES
and 

5. Commutativity of (or ):
R C S  S C R

6. Commuting  with (or ):
if the attributes in C involve only the attributes of R:

C (R S)  (C (R)) S
if c is (c1 and c2) and c1 applies to R and c2 to S:

C (R S)  (C1 (R)) (C2 (S))

CSE 412/598 Query Optimization 7

TRANSFORMATION RULES
and 

7. Commuting  with (or ):
Let A1, ..., An be attributes of R,

B1, ..., Bm be attributes of S,
L = {A1, ..., An, B1, ..., Bm}

If C involves only the attrs of L:
L (R c S)  (A1, ..., An (R)) c (B1, ..., Bm(S))
If C contains additional attributes not in L, these must be
added to the  list and a final  is needed. e.g:
L (R c S)  L((A1,...,An,An+1, ..., An+k(R)) c

(B1, ..., Bm, Bm+1, ..., Bm+p (S)))

CSE 412/598 Query Optimization 8

TRANSFORMATION RULES
 and 

8. Commutativity of set operations:  and  are commutative.
(R  S)  (S  R) (R  S)  (S  R)

9. Associativity of , , , and :
They are individually associative.
Let  be , , , or , then
(R  S)  T  R  (S  T)

10. Commuting  with set operations  and .
Let  be  or , then

C (R  S)  (C (R))  (C (S))

CSE 412/598 Query Optimization 9

TRANSFORMATION RULES
 and 

11.Commuting  with set operations:
The  operation commutes with  and .

Let  be  or , then
L (R  S)  (L (R))  (L (S))

12.Additional logic transformations:
(x)(P(x))  (x)(not (P(x)))
(x)(P(x))  not (x)(not (P(x)))
(x)(P(x) and Q(x))  (x)(not (P(x)) or not (Q(x)))
(x)(P(x) or Q(x))  (x)(not (P(x)) and not (Q(x)))
(x)(P(x) or Q(x))  not (x)(not (P(x)) and not (Q(x)))
(x)(P(x) and Q(x))  not (x)(not (P(x)) or not (Q(x)))

CSE 412/598 Query Optimization 10

HEURISTIC ALGEBRAIC
OPTIMIZATION ALGORITHM

1. Cascade selection
(rule 1)

2. Move selections as far down the tree as possible
(rules 2,4,6,10)

3. Rearrange leaf nodes to get smaller intermediate relations
(rule 9)

4. Combine a  with  to yield a , if possible
5. Cascade projections and push down the tree

(rules 3,4,7,11)
6. Identify common subexpressions

CSE 412/598 Query Optimization 11

QUERY OPTIMIZATION EXAMPLE

T0: Initial Query Tree T1: Cascade selections and push down tree

CSE 412/598 Query Optimization 12

QUERY OPTIMIZATION EXAMPLE

T2: Using commutativity &
associativity properties of join,
rearrange join order

T3: Introduce projections

CSE 412/598 Query Optimization 13

Estimation of Query-Processing Cost

• Databases store the following statistics for each relation:
– nr, the number of tuples in relation r
– V(A, r), the number of distinct values that appear in the relation r for

attribute A

• Then using the above statistics, sizes of various query expressions
can be estimated as follows:
– | r x s | = nr ns

– |  A(r) | = nr / V(A, r), assuming uniform value distribution
– | r⋈ s | ≤ | s |, if R  S is a key for r
– | r⋈ s | = MIN { (nr ns / V(A, r)), (nr ns / V(A, s)) }, if R  S = {A}

CSE 412/598 Query Optimization 14

STUDY PROBLEM

Consider the following query that finds the names and salaries of
employees working on the ‘ProductX’ project:
Assume: nemployee= 100; nworks_on= 100; nproject= 10;

Query: fname, lname, salary

(ssn=essn & pno=pnumber & pname=‘ProductX’

((employee  works_on)  project))

Give the initial query tree. Show the successive query trees generated
during the query optimization process. Give a brief justification at each
step.

	QUERY OPTIMIZATION
	queryopt

