

P—————

~ Fluid Layouts

* “You must be shapeless, formless, like water. When
you pour water in a cup, it becomes the cup. When you
pour water in a bottle, it becomes the bottle. When
you pour water in a teapot, it becomes the teapot.”

Bruce Lee

P—————

~ Fluid Layouts

* Fluid layouts are a great start. They eliminate the
constraints of a fixed-width layout and enable your site
to display nicely on a larger number of screens.

* However, they can only take you so far.

P—————

- Media Queries

* Media queries let you define which styles should apply
under specific circumstances by allowing you to query
the values of features such as

Resolution,
Colour depth
Height, and
Width

* By carefully applying media queries, you can iron out
the remaining wrinkles in your layout.

* By using Media Queries you can:

* Set the viewport of your site.
» Adjust your site design.
* Identify the needed breakpoints.

» Improve the navigation experience across multiple
screen sizes.

P—————

" The Problem

* Consider the site for Figure 3.1 in the text

* If we resize the window to be very wide, the line length
increases.

The wider we go, the further the line length of the article
gets from the ideal.

Other than that, the situation is not all that bad; the
layout holds up pretty well.

The Problem

* As we resize the window to be narrower, the layout
begins to look like it was hit repeatedly with a big

stick.
The window does not have to get very narrow before the
first navigation item falls under the rest of the links
- This is not particularly elegant, but it is not necessarily a deal-
breaker.

The line length of the primary column also gets a bit too

short.

- Remember, ideally we want that line length to fall somewhere
between 45 and 70 characters. Anything under or above those
numbers can have a negative impact on the reading

experience.

P—————

" The Problem

* As the window gets narrower, the issues get worse.

* By 360pX or so, the navigation is a complete mess.

* The primary column can barely fit three words per
line, and even the sidebar is cramped for space.

¢ Clearly we have a Fluid layout but it does not seem to
be scaling/adjusting properly

e And there is more ...

e Problem

* Shrinking a browser is
not the same as viewing
the site on a Mobile
device

YetAnotherSportsSite
That goy has the ball

®* On a mobile device the,
the page maintains its
original layout, but it is
zoomed out so that the
text and site appear quite
small.

P————

- Viewports

* The concept of a viewport is a simple one in terms of
desktop browsers:

the viewport is the visible area of the browser, the
browser width.

* It is so simple, in fact, that no one really bothers to
even think about it.

* But that all changes with phones. Despite having
much smaller screens, they attempt to display the
“tull” site in order to provide a full web experience.
Suddenly things get a little more complicated.

P—————

- When is a Pixel not a Pixel?

* When it comes to browsers, there are two kinds of
pixels:

Device pixels and

CSS pixels
* Device pixels behave the way you would expect a pixel
to behave.

If you have a screen that is 1024px wide, then you can
fit two 512pXx elements side-by-side in it.

P—————

- When is a Pixel not a Pixel?

» CSS pixels are a bit less stable.
» CSS pixels deal not with the screen, but with the

visible area within the

browser window.

* This means that CSS pixels may not line up exactly

with device pixels.

* While on many devices, one CSS pixel is the same as

one device pixel, ona
the Retina display of t!

high-resolution display such as
he iPhone, one CSS pixel is

actually equal to two ¢

evice pixels.

* Just wait... it is about to get even more fun!

P—————

- When is a Pixel not a Pixel?

* Any time a user zooms in or out of a page, the CSS
pixels change.

If a user zooms to 300%, then the pixels stretch to three
times the height and three times the width they were set
at originally.

[f the user zooms to 50%, then the pixels are reduced to

half the height and half the width.

P—————

- When is a Pixel not a Pixel?

* The entire time, the device pixel count does not
change— the screen is, after all, the same width.

* The CSS pixel count, however, does. The number of
CSS pixels that can be viewed within the browser
window changes.

P————

- Viewports

* The changing number of CSS pixels comes into play in
considering the viewport.

* Remember there are two different viewports to
consider:

Physical or Visual Viewport- the screen size
The Layout Viewport - the size of the layout

Viewports

* The layout viewport is similar to device pixels in that
its measurements are always the same, regardless of
orientation or zoom level.

* The visual viewport, however, varies. This is the part of
the page that is actually shown on the screen at any
given point.

Viewports

VISUAL VIEWPORT (DEVICE WIDTH)

INQUIRER

“Give me problems, give
2k | LAYOUT VIEWPORT

In the sear 1878 | took my degres of
Dactor of Medbcine of the U niversity of
London, sad procesded o Netley to go
through the conrse prescribed for
surgeoas in (he army. Having completed

P————

- Viewports

* On a mobile device, this can complicate things.

* To allow for a “full web” experience, many mobile
devices return high layout viewport dimensions.

iPhone has a layout viewport width of 980pX,
Opera Mobile returns 850px, and
Android WebKit returns 800pX.
* This means that if you create a 320pX element on the

iPhone, it will fill up only about a third of the screen
real estate.

P————

Viewports

* The viewport meta tag lets us control the scaling
and Layout Viewport of many devices.

* Basic Syntax
<meta name =“viewport”
content =“directive, directive"
/>

P————

Viewports

* As it turns out, the meta Viewport element is
actually non-normative.

* In plain English, it is not a definitive standard.

* In fact, a close look at the W3C documents reveals that
the only reason it is still included in the specification
is to provide a road map for browsers to migrate to the
new CSS @viewport syntax.

* But it is still widely used and support for @viewport
is Work in Progress

p———

Viewport Properties - width

* The width directive lets you set the viewport to a
specific width, or to the width of the device

* Example
<meta name =“viewport”
content =“width = device-width”
/>

p————_

- Viewport Properties - width

* Using device-width isthe best solution. This way,
your screen’s layout viewport will equal the screen of
the device— in device pixels.

* If you use a specific width instead, such as 240px,

most devices that do not have a width of 240px will
scale to match.

So, if your device has a screen width of 320pX,
everything will be scaled up by a factorof 1.33 (320/
240) in an attempt to display the page neatly

P————

Viewport Properties - width

Set to device-width Set to 320pXx

fin whiat has to be considered a development
fod s wtimost importance, thak man over
here now has the ball

evelopment of the u
importance, that man
now has the ball.

By Ricky Boucher | January 1,

- Viewport Properties - height

® The counterpart to width, height lets you specify a
particular height

* Example
<meta name =“viewport”
content =“height = device-height”
/>

* This sets the layout viewport equal to the height of the
screen.

- Viewport Properties - height

¢ In practice, you probably will not use height very
much.

* The only time it is handy is if you do not want to let
the page scroll vertically, which does not happen that
often.

/_‘VV'. '..““m‘s\/
user-scaleable

* The user-scalable directive tells the browser whether
or not the user can zoom in and out on the page

* Example
<meta name =“viewport”
content =*“user-scaleable = no”
/>

FCWPOIt FIropc ‘m‘s\/
user-scaleable

* You will often find pages that set user-scalable to no,
typically to ensure the “pixel-perfect” display of a
design.

* This is counter to the nature of the Web, and
detrimental to users with accessibility needs.

e If you do not set the user-scalable directive, it will
default to yes.

» Asaresult, it is best to stay clear of this one.

,, “Q/
inttial-scal

* Given a number between 0.1 (10%) and 10.0
(1000%), the initial-scale declarative sets the initial
zoom level of the page.

* Example
<meta name =“viewport"
content =“iInitial-scale = 1,
width = device-width”
/>

inttial-scal

* Using the previous declaration

« If the width of the device is 320pX, the page will display
at 320px

« If the width is 200pX, the page will display at 200px

initral-scal

* Another Example
<meta name =“viewport"
content =“iInitial-scale = 0.5,
width = device-width”
/>

initial-scal

* With the second example, the width attribute is set to

the width of the device and the initial-scale is set to
0.5 (50%).
* This means that the browser will display everything
zoomed out.
On a 320px-wide device, the page will display at 640px
On a 200px-wide device, it will display at 400px

1N

nitial-scalesettol

In what has to be considered a development
if the utmost importance, that man over

'I:II'FI‘ LLIeL LY !I:il.lh llN' hil.l.l

By Ricky Boucher | January 1, 2012

tral-scale

inttial-scalesetto0.5

s En e ronsdered 8 divelopereent of Phe vimesi

it tian oers 1here fow has (B ball

Plasterin ipmuim ddolor slf e, coasecieber s piscing olit
fuallen s Bl spisks il pEvtiuin temngais. %ullas
sin phworas masas, Vivamum lporet convalls sem o
b, (e vadies omigue semm a0 miokesbie. Nagn pedas

pegpe, Tincidunt o sliguam dapibus, dicem & migna

FCWPOIt FIropc ‘m‘s\/
max 1mum-scal

e The maximum-scale declarative tells the browser

how far the user can zoom in on a page. In mobile
Safari, the default is 1.6 (160%), but any number

between 0.1 (10%) and 10.0 (1000%) will work.

* Example
<meta name =“viewport"
content =“maximum-scale = 1.0,
width = device-width”
/>

/ﬂ" '.._‘,Q/
- maximum-scal

* With the previous example, we set the max imum-
scale declarativeto 1.0 (100%).

* This disabled the user’s ability to zoom in.
* Asyou have already seen, this limits accessibility and

should be avoided.

FCWPOIt FIropc ‘m‘s\/
minimum-scal

e The minimum-scale declarative tells the browser

how far the user can zoom out on a page. In mobile
Safari, the default is 0.25 (25%), but any number

between 0.1 (10%) and 10.0 (1000%) will work.

* Example
<meta name =“viewport"
content =“minimum-scale = 1.0,
width = device-width”
/>

/ﬂ" '.._‘,Q/
- maximum-scal

* With the previous example, we set the minimum-
scal e declarative to 1.0 (100%).

* This disabled the user’s ability to zoom out.
* Asyou have already seen, this limits accessibility and

should be avoided.

pODIEMS
viewport

* It does not take a keen eye to tell that by setting the
viewport, we have actually just made the situation

worse

* Now, our site looks equally beaten up on the mobile
and the desktop.

* One recommendation advocated by Visual Designers
1S

“Do not use viewport unless you know what you are
doing”
* Put another way,

“Beware of unintended consequences”

viewport

* It does not take a keen eye to tell that by setting the
viewport, we have actually just made the situation
worse

* Now, our site looks equally beaten by the stick on the
phone and the desktop.

¢ It is time to call on our friend, the media query, for
help.

roblems with me
viewport

* With the viewport set,
the site displays just as it
did on the desktop, only
zoomed out

YetAnotherSportsSite

That related

guy Headlines
That Guy Knocked Out the
has Other Guy
S "

«

P

Media Queries

¢ It is time to call on our friend, the media query, for

help.

P—————

- Media Queries

* Media queries let you question the browser to
determine if certain expressions are true.

e If they are, you can load a specific block of styles
intended for that situation and tailor the display.

P————

- Media Queries

® The general form of a media query is:
@medira [not | only] type [and] (expr) {
rules

}

P—————

- Media Queries

* A media query has four basic components:

Media types: specify the type of device to target

Media expressions: test against a feature and
evaluate to either true or false

Logical keywords: keywords (such as and, or, not,
or only) that let you create more complex expressions

Rules: basic styles that adjust the display

P—————

- Media Types

* The Web extends far beyond the screen devices you are
used to (phones, tablets, desktops, and laptops.

* Information can be printed or accessed via
Braille tactile feedback devices,

Speech synthesizers,
Projectors,
Televisions

And many more.

P—————

- Media Types

* Media types were developed to bring order to this
chaos.

* Each media type tells the user agent (such as a
browser) whether or not to load that stylesheet for a
given type of media.

Media Types defined by CSS

Type

all
braille
embossed

handheld

print
projection
screen
speech
tty

Tv

All Devices (default)
Braille tactile feedback devices
Paged braille printers

Handheld devices (typically small scree and possibly
monochrome)

Printing or print preview

Projected presentations

Colour computer screen

Speech synthesizers

Media using a fixed-pitch character grid (terminals or teletypes)

Television devices

P—————

- Example Media Types

* CSS
@medira print {
by
e HTML
<link rel =*“stylesheet”
href =“print.css”
media =“print”

/>

P—————

Example Media Types

* Every media query must include a media type. If you
do not set one, it should default to al I, but the actual

behavior varies from browser to browser.

* In practice, you will find yourself using al I, screen
and print almost exclusively.

P—————

- Media Expressions

* The power of media queries is their ability to test
against different features of a device using expressions
that evaluate to either true or false.

* A simple example would be to determine whether the
width of the viewport is greater than 320px

@media screen and (min-width: 320px) {
bs

Media Features

width

height
device-width
device-height
orientation

aspect-ratio

Width of the display area of the
device

Height of the display area of the
device

Width of the rendering surface
area of the device

Height of the rendering surface
area of the device

Indicates if the device is in
portrait or landscape orientation

Ratio of the value of the width
feature to the value of the height
feature

Length in pixels
Length in pixels
Length in pixels
Length in pixels

portrait |
landscape

Ratio
height/width

yes

yes

yes

no

yes

Media Features

resolution Pixel density of the device Integer value
* Dots per inch (dpi)
* Dots per cm (dpcm)

scan Scanning process of tvV device progressivel no
interlace
grid Returns whether a device is a Integer valueof 0 no
grid device (1) or a bitmap or 1

device(2)

Media Features

device-
aspect-ratio

color

color-i1ndex

monochrome

Ratio of the value of the device-
width feature to the value of the
device-height feature

Number of bits per color
components of the device, Zero
if not a color device

Number of entries in the color
look-up table for the device

Number of bits per pixel on a
monochrome device, Zero if not
a monochrome device

Ratio

device-
height/device-
width

Integer value

Integer value

Integer value

yes

yes

yes

P————

- Media Features

* Primarily, you will stick to using
 width,
* height,
° orientation,
» resolutionand
» aspect-ratio

P—————

- Logical Keywords - and

* You can use and to test against more than one
expression:

@media screen and (color)

* The above example tests to make sure the device has a
color screen.

P———

~ Logical Keywords - Or

* There is no or keyword for media queries, but the
comma acts as one.

@media screen and (color),
projection and (color)

* In the example above, the query evaluates as true if the
device is either a colour screen device, or a colour
projection device.

P—————

~ Logical Keywords - not

* The not keyword negates the result of the entire
expression, not just a portion of it.
@media not screen and (color) {

} // equates to not (screen and (color))

* For the media query above, the query returns false for
any device that has a color screen.

* You cannot use the not keyword to negate a single
test. If you are using not it must be the first entry in
the media query after the @media keyword.

p——

Logical Keywords - only

* Many older browsers support media types, but not
media queries. This sometimes results in the browser
attempting to download styles that you do not want.

* The only keyword can be used to hide media queries
from older browsers, as they will not recognize the
media query.

* Browsers that do support the only keyword process
the media query as if the only keyword was not
present. This is generally a very good idea.

¢ If you are using only it must be the first entry in the
media query after the @media keyword.

P————

- Logical Keywords - only

* Consider the following media query
@media only screen and (color)

* If a device does not support media queries, it ignores
the query above entirely.

* If the device does support media queries, it evaluates
the query the same way it would evaluate the
following:

@media screen and (color)

Other Logical Keywords

* As Responsive Design takes hold other logical
keywords are being considered for media queries

Keyword Proposed Meaning

script Test to see if ECMAscript is supported, and if that
support is active (i.e., it has not been disabled).

pointer Query about the accuracy of the pointing device (such
as a mouse or finger).

hover Query whether or not the primary pointing method
can hover.

P—————

- Rules

* The last piece in the media query puzzle is the actual
style rules you want to apply.

* These are basic CSS rules. The only special thing about
them is that they are included within a media query

@media only screen and
(min-width: 320px) {
hl{color: blue}

P—————

- Embedded versus External

* Media queries can be embedded in the main stylesheet
or placed in the media attribute of a link element to
include an external stylesheet.

P—————

- Embedded versus External

e Embedded
h1{
text-decoration:none;
ks
@media screen and (min-width: 300px) {

h1l{
text-decoration: underline;

}
}

P————

Embedded versus External

e External

<link href =*style.css"
media =“only screen and (min-width: 300px)"
/>

P—————

- Embedded versus External

* For media queries that are embedded in a single
stylesheet, all styles are downloaded regardless of
whether or not they are needed

but the benetit is that you have to make only one HTTP
request.

* This is an important consideration for performance,
particularly if the device is being used on a mobile
network.

P—————

- Embedded versus External

* Mobile networks suffer from high latency, that is, the
time it takes for the server to receive and process a
request from the browser.

* Every time an HTTP request is made on a mobile
network, it could be taking as much as four or five
times as long as it would take on a typical wired
Internet connection.

P—————

Embedded versus External

* The downside, of course, is that this one CSS file can
get to be very large. So while you have saved a few
requests, you have created a heavy file that can be
difficult to maintain.

P—————

- Embedded versus External

* You might be surprised to learn that external media
queries still result in all the styles being downloaded,
even if they are not applicable.

* The rationale for this is that if the browser window size
or orientation is changed, those styles are ready and
waiting.

* Unfortunately, this results in several HTTP requests
instead of just one.

P—————

- Embedded versus External

* The advantage of external media queries is that the
files will be smaller, helping to make them easier to
maintain.

* You can also serve up a low-weight, simplified
stylesheet to devices that do not support media queries
and again, thanks to the only keyword, you do not
have to worry about them applying styles they will not
need.

P—————

- Media Query Order

* Two ways of building a Responsive site are:
* From the desktop down or
» From mobile up

* The approach selected impacts the structuring of your
CSS

P—————

- Desktop Down

* Responsive design, as it is still most commonly
implemented, is built from the desktop down.

* The default layout is what you typically see on the
screen of a browser on a laptop or desktop computer.
Then, using a series of media queries (typically max-
width), the layout is simplified and adjusted for

smaller screens.

P—————

- Desktop Down

* A stylesheet structured from a Desktop Down
approach might look like the following:

/* base styles */
@media all and (max-width: 768px) {

by
@media all and (max-width: 320px) {

}

P—————

- Desktop Down

* Unfortunately, building from the desktop down results
In some serious issues.

* Media query support on mobile devices, while
improving, is still somewhat sketchy. The following
are example devices that lack media query support

BlackBerry (pre-version 6.0),
Windows Phone 7, and

NetFront (which powers pre-third generation Kindle
devices)

P—————

- Mobile Up

¢ If you flip things around and build the mobile
experience first, and then use media queries to adjust

the

layout as the screen size gets larger, you can largely

circumvent the support issue.

* Bui

mo

stil]

lding the mobile experience first will ensure that

bile devices that do not support media queries will

| be served an appropriate layout.

* The only desktop browser that you will need to
contend with is Internet Explorer.

Prior to version 9, Internet Explorer does not support
media queries.

P—————

- Mobile Up

* A stylesheet structured from a Mobile Up approach
might look like the following:

/* base styles, for the small-screen
experience, go here */

@media all and (nmin-width: 320px) {

+
@media all and (nmin-width: 768px) {

}

P—————

- Media Query Order

* Support is not the only advantage of building mobile
up. Creating the mobile experience first can help
reduce the complexity of your CSS as well.

P————

Media Query Order

Desktop Down Mobile Up

aside{ @media all and
display: table-cell; (min-width:
width: 300px; 320px){

1 aside{

@media all and display: table-

(max-width: cell;

320px){ width: 300px;

aside{ +

display: block; +
width: 100%;

P—————

- Desktop Down v Mobile Up

* Give an Role Play Exercise
» UI Changes v Biz Changes v DB Changes
* Frequency of Changes
» Impact of Changes
» Impact on Desktop Down v Mobile Up Approach

P————

- Create your Core Experience

* Read Book Chapter 3 Pages 76-94. It gives a practical
example of application of the material covered

P————

- Wrapping it up

* Fluid layouts are a start, but they can only take us so
far.

* At some point, we need to adjust the layout,
sometimes dramatically, to better accommodate
different devices.

* Smartphones try to let us experience the full Web. If
the meta viewport element is not being used, most
smartphones display a zoomed version of the site.

P————

- Wrapping it up

* Media queries let us test for features like width and
height and adjust the CSS we apply to our design
accordingly.

* They can be used both externally and internally. Each
method has benetfits and limitations, so it is important
to choose the approach that best meets the project
requirements.

* While it is common to pick specific device widths for
breakpoints, a better approach is to let the content
dictate where you need to include a media query.

