
CSE 412/598
DATABASE MANAGEMENT

COURSE NOTES

11. TRANSACTIONS, RECOVERY &
CONCURRENCY CONTROL

Department of Computer Science & Engineering
Arizona State University

CSE 412/598 Recovery & Concurrency 2

TRANSACTION

an atomic (all or nothing) program unit that performs database access or
update, taking a consistent (correct) database state into another
consistent database state.

database is consistent here
begin transaction;/* Transfer funds */

balance1 balance1 - amount
database is inconsistent here

balance2 balance2 + amount
end transaction; /* Transfer funds */

database is consistent here

ACID properties of a transaction
Atomicity, Consistency, Isolation, Durability

CSE 412/598 Recovery & Concurrency 3

ATOMICITY

“The system under test must guarantee that transactions are atomic; the system
will either perform all individual operations on the data, or will assure that no
partially-completed operations leave any effects on the data.” [TPCA89]

ATM WITHDRAWAL (amt)
read bal
if bal > amt {

bal bal - amt
/* system goes down */
dispense money

}

[TPCA89] TPC BENCHMARKTM A
Standard Specification, 10 November 1989

CSE 412/598 Recovery & Concurrency 4

CONSISTENCY

“Consistency is the property that requires any execution of the transaction to
take the database from one consistent state to another.” [TPCA89]
Since the assumption is that a transaction is written so that it is consistent,
consistency means that it remains consistent in the presence of the concurrent
execution of transactions. (Serializability)

ATM WITHDRAWAL (amt1) ATM WITHDRAWAL (amt2)
read bal
if bal > amt1 read bal
{ if bal > amt2

bal bal - amt1 {
dispense money bal bal - amt2

} dispense money
}

CSE 412/598 Recovery & Concurrency 5

ISOLATION

The transaction should not reveal its uncommitted results to other transactions ...

ATM WITHDRAWAL (amt1) ATM WITHDRAWAL (amt2)
read bal
if bal > amt1
{

bal <- bal - amt1
read bal

/* trans aborted */ if bal > amt2
dispense money {

} bal bal - amt2
dispense money }

CSE 412/598 Recovery & Concurrency 6

DURABILITY

“The test bed system must guarantee the ability to preserve the effects of
committed transactions and insure database consistency after recovery”
from single failures... [TPCA89]

• permanent irrecoverable failure of any single durable
medium containing database or recovery log data

• system crash/hang requiring system reboot

• memory failure (all or part)

CSE 412/598 Recovery & Concurrency 7

RECOVERY CONTROL

integral part of the DB, responsible for
• the detection of failures
• restoration of the DB to a (consistent) state that existed prior to the

failure.
• responsibility of the recovery scheme to ensure atomicity.

CSE 412/598 Recovery & Concurrency 8

SYSTEM LOG

• Records all transaction operations that affect the value of database
items to be able to recover from failure.

• Log is kept on disk & periodically backed up to archival storage.

Let T be a unique transaction ID,
X be a database item.

LOG ENTRIES
• [start-transaction, T]
• [write-item, T, X, new_value], or

[write-item, T, X, old_value, new_value]
• [read-item, T, X]
• [commit, T]

CSE 412/598 Recovery & Concurrency 9

SYSTEM LOG ASSUMPTIONS

• Transactions are not nested
• All permanent changes to the DB occur within

transactions; so using the log, operations can be undone
or redone based on transaction state.

CSE 412/598 Recovery & Concurrency 10

INCREMENTAL LOG WITH
IMMEDIATE UPDATES

This protocol uses
[start-transaction, T]
[read-item, T, X]
[write-item, T, X, old_value, new_value]
[commit, T]

Log records must be written to “stable storage” before
executing an immediate update.

CSE 412/598 Recovery & Concurrency 11

INCREMENTAL LOG WITH
IMMEDIATE UPDATES

Recovery scheme:
Undo(Ti) where Ti is uncommitted transaction
Redo(Tj) where Tj is committed transaction

Redo & Undo must be idempotent – “executing it several
times is equivalent to executing it once.”

CSE 412/598 Recovery & Concurrency 12

INCREMENTAL LOG WITH
DEFERRED UPDATES

• During the execution of a transaction, all the write
operations are deferred, recorded on a log and transaction
workspace, until the transaction partially commits.

• At commit point, log is force written to disk and deferred
writes are executed.

This protocol uses entries:
[start-transaction, T]
[write-item, T, X, new_value]
[commit, T]

CSE 412/598 Recovery & Concurrency 13

INCREMENTAL LOG WITH
DEFERRED UPDATES

Recovery scheme
• Log entries for uncommitted transactions are ignored

because writes are deferred.
• Committed transactions must be redone (in order).

Redo must be idempotent.

CSE 412/598 Recovery & Concurrency 14

CHECKPOINTS

Log entry used to improve performance of recovery

[checkpoint] indicates that the system has written to the disk the
effect of all write operations of committed
transactions.

 Transactions that have a commit entry before a checkpoint entry will
NOT require their write operations to be redone in case of a system
failure.

A checkpoint may contain additional info
• list of active IDs
• locations of first and most recent records in the log

CSE 412/598 Recovery & Concurrency 15

SYSTEM LOG EXAMPLE

[start-trans T1]
...
[commit T1]
[start-trans T2]
....

A:
[checkpoint]

B:
[commit T2]

C:

CSE 412/598 Recovery & Concurrency 16

SYSTEM LOG EXAMPLE
Recovery Scheme

 IMMEDIATE DEFERRED

A

REDO T1, UNDO T2 REDO T1

B UNDO T2 ___

C REDO T2 REDO T2

CSE 412/598 Recovery & Concurrency 17

CONCURRENCY CONTROL

In a multiprogramming environment where several transactions may be
executed concurrently, the system must control the interaction among the
concurrent transactions in order to prevent them from destroying the
consistency of the database.

SCHEDULE:
an execution sequence that must preserve the order in which the
instructions appear in each individual transaction

SERIAL SCHEDULE:
a sequence of instructions from various transactions where the
instructions belonging to one single transaction appear together
in that schedule (for a set of n transactions, there are n! legal
serial schedules)

CSE 412/598 Recovery & Concurrency 18

EXAMPLE SCHEDULES

T0 T1
read_item(A) read_item(A)
write_item(A) read_item(B)
read_item(B) write_item(B)
write_item(B)

equivalently:
R0(A)W0(A)R0(B)W0(B)R1(A)R1(B)W1(B)

Schedule of operations including multiple transactions.
S1: R0(A)W0(A)R0(B)W0(B)R1(A)R1(B)W1(B) - serial
S2: R1(A)R1(B)W1(B)R0(A)W0(A)R0(B)W0(B) - serial
S3: R0(A)W0(A)R1(A)R0(B)W0(A)R1(B)W1(B) - not serial

Is it equivalent to a serial schedule?
Yes, it is equivalent to S1  “serializability”

CSE 412/598 Recovery & Concurrency 19

SERIALIZABILITY

ensuring that the outcome of processing a set of transactions concurrently
be the same as one produced by running these transactions serially in
some order

COMPUTATIONALLY EQUIVALENT:
S1 = S2 if
1. The set of transactions that participate in S1 and S2 are the same.
2. For each data item X, if in S1 trans Ti executes read(X) and the value

of X read by Ti was written by Tj, then the same will hold in S2.
3. For each data item X, if in S1 trans Ti executes the last write(X)

instruction, then the same holds in S2.

S is SERIALIZABLE if there is a serial schedule S' s.t. S=S'.

CSE 412/598 Recovery & Concurrency 20

PRECEDENCE GRAPH

a direct graph G = (V,E) where
V = set of transactions participating in the schedule
E = set of edges Ti  Tj for which one of the following holds:
1. Ti executes write(X) before Tj executes read(X)

(only when Tj reads value written by Ti)
2. Ti executes read(X) before Tj executes write(X)

(Intuitively, an edge Ti  Tj implies that in any serial schedule S‘
equivalent to S, Ti must appear before Tj.)

CONSTRAINED WRITE ASSUMPTION:
A transaction must read a data item before it can write it.
The schedule S is serializable if the precedence graph for S
contains no cycles.

CSE 412/598 Recovery & Concurrency 21

SERIALIZABILITY EXAMPLES

CSE 412/598 Recovery & Concurrency 22

MORE SERIALIZABILITY EXAMPLES

SC: R0(X)R1(X)W0(X)R0(Y)W1(X)W0(Y)

not serializable

SD: R0(X)W0(X)R1(X)W1(X)R0(Y)W0(Y)

serializable
equivalent to serial schedule
R0(X)W0(X)R0(Y)W0(Y)R1(X)W1(X)

CSE 412/598 Recovery & Concurrency 23

SERIALIZABILITY ORDER

a linear order consistent with the partial order of the precedence graph

Impractical to test for serializability ... protocols (sets of rules) are used
to ensure serializability
• LOCKING (2PL)
• TIMESTAMPS

All schedules allowed by 2PL/timestamps are serializable,
but 2PL/timestamps do not allow all possible serializable schedules.

CSE 412/598 Recovery & Concurrency 24

LOCKING

To ensure serializability require access by locks.
LOCK MODES

READ/SHARED:
if a trans T has obtained a shared mode lock on item X by
read_lock(X)/LS(X), then T can read this item but it cannot
write X

WRITE/EXCLUSIVE:
if a trans T has obtained an exclusive mode lock on item X by
write_lock(X)/LX(X), then T can both read and write X

UNLOCKED:
T unlocks data item X by issuing an unlock_item(X)/UN(X)

CSE 412/598 Recovery & Concurrency 25

LOCK COMPATIBILITY MATRIX

LOCK:
Lock manager issues lock to requesting transaction

WAIT:
Transaction requesting lock must enter a wait state until lock
issued by lock manager.

 READ REQUEST WRITE REQUEST

READ LOCK LOCK WAIT

WRITE LOCK WAIT WAIT

CSE 412/598 Recovery & Concurrency 26

LOCKING ASSUMPTIONS

Well-formed Assumption:
Every transaction requests a lock in an appropriate mode on data item
X depending on the type of operations it will perform on X. (Therefore,
locks will not be escalated.) If the data item is already locked by another
transaction in an incompatible mode, then T must wait until all
incompatible locks held by other transactions have been released.

CSE 412/598 Recovery & Concurrency 27

LOCKING OVERVIEW

1. If a trans unlocks a data item immediately after its last access of the
data item, serializability may not be ensured.

2. Two-phase locking protocol (2PL) - ensures serializability.
• Growing phase: a trans may obtain locks but may not release any

locks.
• Shrinking phase: a trans may release locks but may not obtain any

new locks.
3. To guarantee isolation, locks must be held until the transaction

reaches its commit point.
4. Deadlock can occur - each of two transactions is waiting for the

other to release an item.
5. Livelock can occur - a transaction cannot proceed for an indefinite

amount of time while other transactions continue normally (lock
manager must be fair).

CSE 412/598 Recovery & Concurrency 28

EXAMPLE TRANSACTIONS

T1: Display A+B T2: Inc A & Dec B
R(B) R(A)
R(A) A A + 1
Display A+B W(A)

R(B)
B  B - 1
W(B)

CSE 412/598 Recovery & Concurrency 29

WELL-FORMED BUT NOT
SERIALIAZABLE

T1 T2
LS(B)
R(B)
UN(B)

LX(A)
R(A)
AA + 1
W(A)
UN(A)
LX(B)
R(B)
B  B – 1
W(B)
UN(B)

LS(A)
R(A)
UN(A)
Display A+B

S: R1(B)R2(A)W2(A)R2(B)W2(B)R1(A)

CSE 412/598 Recovery & Concurrency 30

2PL: SERIALIAZABLE BUT NOT ISOLATED

T1' T2
LX(A)
R(A)
AA + 1
W(A)
LX(B)
UN(A)

LS(A)
R(A)

R(B)
B  B – 1
W(B)
UN(B)

LS(B)
UN(A)
R(B)
UN(B)
Display A+B

S: R2(A)W2(A)R1(A)R2(B)W2(B)R1(B)

CSE 412/598 Recovery & Concurrency 31

2PL & ISOLATION

T1 T2 T3
LS(B)
R(B)

LS(B)
LS(A)
R(A)

R(B)
UN(B)

UN(A)
LX(A)
R(A)
AA + 1
W(A)

UN(B)
LX(B)
R(B)
B  B – 1
W(B)
UN(B)
UN(A)

S: R1(B)R1(A)R3(B)R2(A)W2(A)R2(B)W2(B)

CSE 412/598 Recovery & Concurrency 32

DEADLOCK

T1 T2

LS(B)
R(B)

LX(A)
R(A)
A A + 1
W(A)

LS(A)
LX(B)

CSE 412/598 Recovery & Concurrency 33

DEADLOCK

DEADLOCK - waiting for an event that will not occur

Necessary conditions for a deadlock to exist:
• mutual exclusion: exclusive control of resources
• wait for: resources held while waiting for additional ones
• no preemption: resources are held until used to completion
• circular wait: each transaction holds one or more resources requested

by the next transaction in the circular chain

CSE 412/598 Recovery & Concurrency 34

DEADLOCK APPROACHES

• TIMEOUT: abort a transaction after it has been in a wait state for a
specified time interval
° may abort a transaction not in deadlock
° difficult to determine appropriate timeout interval
° cascading effect due to system overload

• DEADLOCK PREVENTION: a transaction is not allowed to enter a
wait state if there is a risk of deadlock

• DEADLOCK DETECTION: periodically check if the system is in
deadlock and rollback a deadlocked transaction

CSE 412/598 Recovery & Concurrency 35

TIMESTAMPS

A timestamp is a unique identifier assigned to a transaction when it
starts. Concurrency control techniques use the timestamps to guarantee
serializability. A transaction is aborted and restarted if the execution of
its next operation would violate the serializability order. Thus,
concurrency control based on timestamps do not suffer from deadlock.

TIMESTAMP ORDERING:
selecting a serializability order in advance between every pair of trans
[not exactly - see protocol]

CSE 412/598 Recovery & Concurrency 36

TIMESTAMPS

Implementation
TS(Ti): unique fixed timestamp for trans Ti; assigned by the db system before

Ti starts execution
If a trans Ti has timestamp TS(Ti) and a new trans Tj enters the system,
then TS(Ti) < TS(Tj)

Implementation of timestamp:
1) Use the value of the system clock
2) Use a logical counter that is incremented after a new timestamp has been

assigned

write_TS(X):
the largest timestamp of any trans that successfully executes write(X)

read_TS(X):
the largest timestamp of any trans that successfully executes read(X)

CSE 412/598 Recovery & Concurrency 37

BASIC TIMESTAMP METHOD

Let TS: timestamp of transaction requesting operation

READ(x,TS)
if TS < write_TS(x)

reject & restart
else

execute read
read_TS(x)  max(read_TS(x), TS)

WRITE(x,TS) /* assume read before write */
if TS < read_TS(x)

reject & restart
else

execute write
write_TS  TS

CSE 412/598 Recovery & Concurrency 38

NOTES ON TIMESTAMPS

1) A trans Ti, which is rolled back as a result of the concurrency
control scheme, is assigned a unique timestamp and restarted

2) Serializability ensured
3) Freedom from deadlock (since no trans ever waits)
4) May result in cascading rollbacks and livelock (“cyclic restart”)

NEITHER LOCKING NOR TIMESTAMPS ALLOW ALL POSSIBLE
SERIALIZABLE SCHEDULES...

some schedules are possible under each protocol that are not allowed in
the other

CSE 412/598 Recovery & Concurrency 39

TIMESTAMPS OK - NOT 2PL

T0 T1 T2
LX(A)
LX(B)
R-W(A)
UN(A)

LX(A)
R-W(A)
UN(A)

LX(A)
R-W(A)
UN(A)

R-W(B)
UN(B)

R-W(B)  cannot get lock on B

CSE 412/598 Recovery & Concurrency 40

2PL OK - NOT TIMESTAMPS

T0 T1

LS(A)
R(A)

LX(B)
R-W(B)
UN(B)

LS(B)
R(B)  write-TS(B) = 1 & 0 < 1,  reject & restart
UN(A)
UN(B)

