, sqLsummary of fundamental EMPLOYEE TRAINING Querjes,
TABLE 5.

_-—--"'__—--—_ _\
Query JSQL

"'-—_—;:I;t « from employee E where E.eSalary > 100007';—...____‘
Qo

select distinct E.eLast, E.eFirst, E.eTitle fr‘“’m
On 3

select E.EID from employee E where E.ETitlE:‘ManaQEr”
U

g union .

select E.eID from employee E where E'9T1t15='ﬁoacng

0 select E.eID from employee E where E-ETit19=‘Manage_r._-__—""‘

except
select T.eID from takes T;

0 select E.eID, C.cID from employee E, trainingCourse F
x

TABLE 5.3 5QL summary of additional EmpLovEE TRAINING queries.
Query vSQL

2n

select E.eID from employee E where E.eTitle='Manager’
intersect

select T.eID from takes T;

Do select *

from employee E, technologyArea A
where E.elID=A.alLeadID;

Oba select distinct C.cTitle, T.tYear, T.tMonth, T.tDay
from trainingCourse C, takes T
where C.cID=T.cID ;

Difference. The difference example query over the EMPLOYEE TRAINING
terprise retrieves the identification number of employees who are managers thi
have not taken any training courses. The previous version of the query psed the B
cept operator in SQL after defining the managers and takenCourse mtermedlalj:
tables: :

select * from managers except select * from takenGourse;

This query can also be specified in one step in SQL using an exists condit
the where clause:

v select E.eID
from employee E

where E.eTitle=‘Manager’ and not exists
(select *

from takes T
where T.eID=E.eID);

Division. The division example query over the abstract domain finds the
a’s from the abTable that are related to all of the b’s specified in the bTable,
where the schema of the tables are abTable(a,b) and bTable(b). Since SQL does
not provide for the specification of universal quantification, SQL's specification of
division uses the logically equivalent definition in terms of existential quantification:

v select distinct T.a
from ahTable T
where not exists
(select * -=-8
from bTable B
where not exists
(select * -—ap
from abTable AB
where AB.a=T.a and AB.b=B.b));

Jatabas®:

int
employees . g,esala‘“”’ max(g.eSalar‘y),
At select m1g(E esala'“ﬂ’ sum(E.eSalary), count (*)
" av i
from enploye® i

: 1 five attribute values. The min. ma

gngle tuple WP : ,Max, avg
Thisquery ret:nl};;i apply to 8 TUMENE attribute. The count (*) counts the nn i,
¢ the result of the from clause, simce there is no where clause e
. :Lomer example, consider a query that counts the number of employe

that took training course in the database technology area:
a

Jpp: select count (distinct T.elD)
" fron dgocourse D, takes T
where p.cip = T.cID;

Grouping. In the previous example, the aggregation applied to all of il
tuples in the result of the (from and) where clause. Some queries require appli
an aggregate function 10 gTOUPS of tuples that have the same value on a groupt
of attributes. SQL provides a group by clause for the specification of the groupi

attributes. For example, consider the query that finds the minimum, maximu,
average salary of employees by title: |

Jat: select E.eTitle, min(E.eSalary),

max (E.eSalary), avg(E.eSalary)
from employee E

group by E.eTitle;

a5

Count how many same values in a column:

Relation Mame |# Tuples cdCodelchan groupCodelchar
top10CDs 11 ‘cT ‘=1
top10CDs_tmp1 11 §§ ‘cZ ‘G
top10CDs_tmp2 5 §§ ‘c¥ G
final_question2 5 §§ ‘Cd ‘¥

§§ ‘CE G¥
§§ ‘CE ‘G4
§§ ‘CT ‘G4
§§ ‘cE ‘G4
§§ ‘oY ‘G4
§§ ‘c10 ‘GE
§§ ‘C1Z ‘GE
=>

Relation Mame |# Tuples §§ groupCodelchan numberQfTop10CDsinumeric
top10CDs 11 §§ ‘GH 2
top10CDs_tmp1 11 §§ G4 4

op10CDs_tmp2 B[:|G3" 2
final_guestion2 5] z[G2 2

§§ ‘G1 1

top10CDs_tmp2(groupCode,numberOfTop10CDs):=select groupCode, count(*) from
top10CDs_tmp1 group by groupCode;

Max, Min, Avg Cal for one column but group by another column:

Relation Mame |# Tuples cdCodelchar tracks/inumeric yearinumeric
cds2000 15| :fCF 2001
cds2000_tmp1 70 §§ ‘C4' 3 2003
totalTracks 15| :['C5 3 2003
totalTracks_tmp1 15 §§ LoTh 3 2003
final_question3 4 §§ ‘cE 10 2003

J[co 9 2002
§§ ‘c10 2 2003
o S 2 2003
Jrc1z 1 2001
§§ ‘c13 7 2000
o 5 2000
§§ ‘C18 3 2003
i e 3 2001
[czo 3 2003
§§ ‘C21 8 2001

Relation Mame |# Tuples yearinumeric maxMumber/numeric minMumbernumeric avglumbernumeric
cds2000 15 2000 7 5 G
cds2000_tmp1 70 §§ 2001 8 1 5
totalTracks 15 §§ 2002 g g 9
totalTracks_tmp1 15 §§ 2003 10 2 3625
[final_guestion3 4 :

%Cal year, maxNumber, minNumber, avgNumber

final_question3(year, maxNumber, minNumber, avgNumber):=select year, max(tracks),
min(tracks),avg(tracks) from totalTracks_tmp1 group by year order by year;

Division

Relation Mame|# Tuples §§ groupCodelchar clientiDichan

clients_detroit 3 §§ ‘G1 ‘Client1”

info 17 §§ G ‘Clientg’

gCode 2 §§ ‘G ‘Clientd’

final_guestiond 2 §§ ‘a3 ‘Client1”
§§ G¥ ‘Client3’
§§ ‘G4 ‘Client3’
§§ ‘G4 ‘Client1’
§§ ‘G4 ‘Client2’
§§ ‘GE ‘Client1’
§§ G ‘Clients’
§§ ‘GE ‘Clients’
§§ ‘=1 ‘Clientd’
'G5’ "Clients’
§§ A ‘Clientd’
§§ A ‘Clients’
§§ ‘A ‘Clientg’
§§ A ‘Client2’

/

Relation Mame|# Tuples clientiDichar

clients_detroit 3 §§ ‘Clientd’

infa 17 §§ ‘Clients’

gCode 2| :|'Clients’

final_guestiond 2| :

=>

Relation Mame|# Tuples groupCodelchar

clients_detroit 3| :fcZ
info 17| :[GF
gCode 2| :

final_guestiond 2| :

%cal info/clients_detroit the groupCode such that every client in Detroit rented at least one of
their CDs.

gCode:=select distinct T.groupCode
frominfo T
where not exists

(select *

from clients_detroit B

where not exists

(select *
from info AB

where AB.groupCode = T.groupCode and AB.clientID=B.clientID));

