DES and AES

Chun-Jen Chung

- Q: Why does the ciphers introduced so far not secure?
- A: because of language characteristics
- Q: Any ideas to improve them (you already know the answer)?
- A: Use both substitution and transposition

From classical to modern ciphers

- Consider using several ciphers in succession to make harder, but:
- Two substitutions make a more complex substitution
- Two transpositions make more complex transposition
- But a substitution followed by a transposition makes a new much harder cipher
- Q: What is this type of ciphers called?
- A: product ciphers
- This is bridge from classical to modern ciphers
- Q: What is most well-known and widely used morden cipher(s)?
- A: DES, AES,...

Classification of encryption algorithms

Stream cipher

Plaintext bitstream
Pesudo-random stream
Ciphertext stream

11111110000000 ...
10011010110100 ...
$01100101110100 \ldots$

Q: Caesar is a stream cipher?

Block cipher

n bit ciphertext

The encryption is performed using one of the operation modes, we will visit it later.

Common block sizes:
$\mathrm{n}=64,128,256$ bits

Common key sizes:
$k=40,56,64,80,128,168,192,256$ bits

Stream cipher vs. Block cipher

Stream cipher

Block cipher

- Speed of transformation:

Because each symbol is encrypted without regard for any other plaintext symbols, each symbol can be encrypted as
Pros. soon as it is read.

- Low error propagation: Because each symbol is separately encoded

- High diffusion:

Information from the plaintext is diffused into several ciphertext symbols.

- Immunity to insertion of symbols:
Because blocks of symbols are enciphered, it is impossible to insert a single symbol into one block. The length of the block would then be incorrect
- Low diffusion

Cons. • Susceptibility to malicious insertions and modifications

- Slowness of encryption (c.f. faster than public key)
- Error propagation

DES (Data Encryption Standard)

Block cipher: DES, AES

DES: Data Encryption Standard (1970s)
or
DEA: Data Encryption Algorithm
AES: Advanced Encryption Standard (2001)

DES Structure

DES Structure

Overview of DES

- Block cipher: 64 bits at a time
- Initial permutation rearranges 64 bits (no cryptographic effect)
- Encoding is in 16 rounds

Overview of DES

16 rounds of permutations and substitution

DES is a 64-bit block cipher. Both the plaintext and ciphertext are 64 bits wide.
The key is 64-bits wide, but every eighth bit is a parity bit yielding a 54-bit key.

Initialization

Termination

A round

Feistel Function (f function)

- E-box
- Expansion permutation 32-bits $\rightarrow 48$-bits
- Key mixing
- XOR with 48-bits subkey
- S-boxes (substitution)
- Non-linear transformation
- P-box (permutation)
- Rearrange output

E-box

- Expansion function
- 32 bits $\rightarrow 48$ bits

S_{1}						
	32	1	2	3	4	5
S_{2}	4	5	6	7	8	9
S_{3}	8	9	10	11	12	13
S_{4}	12	13	14	15	16	17
S_{5}	16	17	18	19	20	21
S_{6}	20	21	22	23	24	25
S_{7}	24	25	26	27	28	29
S_{8}	28	29	30	31	32	1

Add a copy of the immediately adjacent bit 16 bits appear twice, in the expansion

S-box

- Only non-linear transformation in DES, the core of security of DES.
- $\mathrm{B}=\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4} \mathrm{~b}_{5} \mathrm{~b}_{6}$
$-\mathrm{b}_{1} \mathrm{~b}_{6} \rightarrow$ row ($2^{2}: 0 \sim 3$)
$-\mathrm{b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4} \mathrm{~b}_{5} \rightarrow$ column (24: 0~15)

S-box

C (4 bit)

- $\mathrm{C}=\mathrm{S}$ (row, column)
- E.g.

B = 101111
$\mathrm{C}=\mathrm{S}(3,7)=7$
$=\underline{0111}$

- $\mathrm{B}=011011, \mathrm{C}=$?

DES Key Generation

64 bit key

Left						
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
Right						
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

PC-2 selects the 48-bit subkey for each round from the 56-bit key-schedule state

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

Key transform

Key transform

Study simple DES

- 8 bits block with a 10 bits key
- The encryption process is :
- Initial Permutation
- Function $\mathrm{f}_{\mathrm{k} 1}$
- Switch of the key halves
- Function $\mathrm{f}_{\mathrm{k} 2}$
- Final Permutation (inverse of initial permutation)

DES: security concern

- 56 bit key is too short
- Can be broken on average in $2^{\wedge} 55 \approx 3.6^{*} 10^{\wedge} 16$ trials
- Moore's law: speed of processor doubles per 1.5 yr
- 1997: 3500 machines broke DES in about 4 months
- 1998: 1M dollar machine broke DES in about 4 days

DES: security concern

- Weak Keys
- 56 bit key is too short
- Can be broken on average in $2^{56} \approx 7.21^{*} 10^{16}$ trials
- Moore's law: speed of processor doubles per 1.5 yr
- Keys make the same sub-key in more then 1 round.
- DES has 4 week keys
- 0101010101010101
- FEFEFEFE FEFEFEFE
- E0E0E0E0 F1F1F1F1
- 1F1F1F1F 0E0E0E0E
- Using weak keys, the outcome of the PC1 to sub-keys being either all 0 , all 1, or alternating 0-1 patterns.
- Another problem: $\mathrm{E}_{\text {weak-key }}\left(\mathrm{E}_{\text {weak-key }}(\mathrm{x})\right)=\mathrm{x}$.

DES: security concern

- Cracking the 56-bit DES Encryption Algorithm
$\left\{\begin{array}{l}\text { Jan } 1997 \\ 2304 \text { hours }\end{array}\right.$

July 1998 56 hours

Jan 1999

22.25 hours

Multiple Encryption \& DES

- DES is not secure enough.
- The once large key space, 2^{56}, is now too small.
- In 2001, NIST published the Advanced Encryption Standard (AES) as an alternative.
- But users in commerce and finance are not ready to give up on DES.
- Solution: to use multiple DES with multiple keys

Q: how many times can we use? A: $2,3, \ldots$

Double-DES

- 2-DES

Any problem for this scheme?

Attack Double-DES

- 2-DES: $\mathrm{C}=\mathrm{E}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right), \mathrm{P}=\mathrm{D}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}(\mathrm{C})\right)$
- So, $\mathrm{X}=\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})=\mathrm{D}_{\mathrm{K} 2}(\mathrm{C})$

(1) try all $2{ }^{56}$ possible keys for K1
(2) try all 2^{56} possible keys for K2
(3) If $\mathrm{E}_{\mathrm{K} 1^{\prime}}(\mathrm{P})=\mathrm{D}_{\mathrm{K}^{\prime}}(\mathrm{C})$, try the keys on another $\left(\mathrm{P}^{\prime}, \mathrm{C}^{\prime}\right)$
(4) If $\mathrm{E}_{\mathrm{K} 1^{\prime}}\left(\mathrm{P}^{\prime}\right)=\mathrm{D}_{\mathrm{K} 2^{\prime}}\left(\mathrm{C}^{\prime}\right),\left(\mathrm{K} 1^{\prime}, \mathrm{K} 2^{\prime}\right)=(\mathrm{K} 1, \mathrm{~K} 2)$ with high probability

Takes $2 \times{ }^{256}=2{ }^{57}$ steps; not much more than attacking 1-DES.

Triple-DES with Two-Keys

- hence must use 3 encryptions
- would seem to need 3 distinct keys
- In practice: $\mathrm{C}=\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)$
- Also referred to as EDE encryption
- Reason:
- if K1=K2, then 3DES = 1DES. Thus, a 3DES software can be used as a single-DES.
- Standardized in ANSI X9.17 \& ISO8732
- No current known practical attacks
- Q: What about the meet-in-the-middle attack?

Meet-in-the-Middle Attack on 3DES

1. For each possible key for K1, encrypt P to produce a possible value for A.
2. Using this A, and C, attack the 2DES to obtain a pair of keys (K2, K1').
3. If $\mathrm{K} 1^{\prime}=\mathrm{K} 1$, try the key pair $(\mathrm{K} 1, \mathrm{~K} 2)$ on another $\left(\mathrm{C}^{\prime}, \mathrm{P}^{\prime}\right)$.
4. If it works, $(\mathrm{K} 1, \mathrm{~K} 2)$ is the key pair with high probability.
5. It takes $\mathrm{O}\left(2^{55} \times 2^{56}\right)=\mathrm{O}\left(2^{111}\right)$ steps on average.

Triple-DES with Three-Keys

- Encryption: $\mathrm{C}=\mathrm{E}_{\mathrm{K} 3}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)$.
- If $\mathrm{K} 1=\mathrm{K} 3$, we have 3DES with 2 keys.
- If $\mathrm{K} 1=\mathrm{K} 2=\mathrm{K} 3$, we have the regular DES.
- So, 3DES w/ 3keys is backward compatible with 3DES w/ 2 keys and with the regular DES
- Some internet applications have adopted 3DES with three keys.
- E.g., PGP (pretty good privacy) and S/MIME
(Secure/Multipurpose Internet Mail Extensions).

Triple-DES

- Triple DES

With two keys: $\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K}_{1}}(\mathrm{M})\right)\right)=\mathrm{C}$ With three keys: $\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 3}(\mathrm{M})\right)\right)=\mathrm{C}$

AES (Advanced Encryption Standard)

AES

- DES cracked, Triple-DES slow: what next?
- 1997 NIST called for algorithms
- Final five
- Rijndael (Two Belgians: Joan Daemen, Vincent Rijmen),
- Serpent(Ross Anderson),
- Twofish(Bruce Schneier),
- RC6(Don Rivest, Lisa Yin),
- MARS (Don Coppersmith, IBM)
- 2000 Rijndael won
- 2002 Rijndael became AES

Overview of AES

- Based on a design principle known as substitution-permutation network (SPN)
- Block length is limited to 128 bit
- The key size can be independently specified to 128,192 or 256 bits

Key size (words/bytes/bits)	$4 / 16 / 128$	$6 / 24 / 192$	$8 / 32 / 256$
Number of rounds	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$
Expanded key size (words/byte)	$44 / 176$	$52 / 208$	$60 / 240$

General design of AES encryption cipher

128-bit plaintext

AES

- Each round uses 4 functions
- ByteSub (nonlinear layer) :
- referred to as an S-box; byte-by-byte substitution
- ShiftRow (linear mixing layer)
- A simple permutation row by row
- MixColumn (nonlinear layer)
- A substitution that alters each bye in a column as function of all of the bytes in column
- AddRoundKey (key addition layer)
- A simple bitwise XOR of the current block with a portion of the expanded key
http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/rijndael_ingles2004.swf

AES 4 Steps

| $a_{0,0}$ | $a_{0,1}$ | $a_{0,2}$ | $a_{0,3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a_{1,0}$ | $a_{1,1}$ | $a_{1,2}$ | $a_{1,3}$ |
| $a_{2,0}$ | $a_{2,3}$ | $a_{2,2}$ | $a_{2,3}$ |
| $a_{3,0}$ | $a_{3,1}$ | $a_{3,2}$ | $a_{3,3}$ |

$\begin{gathered} \text { No } \\ \text { change } \\ a_{0,0} \end{gathered}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$		$a_{0,0}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
Shift 1 $a_{1,0}$	$a_{1,1}$	$a_{1,2}$	a_{1}	Shitrows	$\mathrm{a}_{1,1}$	$\mathrm{a}_{1,2}$	$\mathrm{a}_{1,3}$	a_{1}
Shift $2 a_{2,0}$	$a_{2,1}$	2,2	$a_{2,3}$		$\mathrm{a}_{2,2}$	$\mathrm{a}_{2,3}$	$a_{2,0}$	a_{2}
Shift $3 a_{3,0}$	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$		$a_{3,3}$	$\mathrm{a}_{3,0}$	$\mathrm{a}_{3,1}$	a_{3}

DES vs. AES

	DES	AES
Date	1976	1999
Block size	64	$\mathbf{1 2 8}$
Key length	56	$128,192,256$
Number of rounds	16	$10,12,14$
Encryption primitives	Substitution, permutation	Substitution, shift, bit mixing
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion
Structure	Feistel	SPN(substitution-permutation network)
Design	Open	Open
Design rationale	Closed	Open
Selection process	Secret	Secret, but accept open public comment
Source	IBM, enhanced by NSA	Independent cryptographers

Modes of operation

Q: If block size is bigger than 64 bits in case of using DES?

Block cipher

n bit ciphertext

The encryption is performed using one of the operation modes

Common block sizes:
$\mathrm{n}=64,128,256$ bits

Common key sizes:
$k=40,56,64,80,128,168,192,256$ bits

Modes of Operation

- block ciphers encrypt fixed size blocks - e.g., DES encrypts 64-bit blocks with 56-bit key
- need some way to en/decrypt arbitrary amounts of data in practice
- ANSI X3.106-1983 Modes of Use (now FIPS 81) defines 4 possible modes
- subsequently 5 defined for AES \& DES
- have block and stream modes

Modes of Operation

- ECB - Electronic Code Book
- CBC - Cipher Block Chaining Most popular
- OFB - Output Feed Back
- CFB - Cipher Feed Back
- CTR - Counter

Electronic Codebook Book (ECB)

- Message (plaintext) is broken into independent blocks
- Each block is encrypted independently of the other blocks
$\mathrm{C}_{\mathrm{i}}=\operatorname{DES}_{\mathrm{K} 1}\left(\mathrm{P}_{\mathrm{i}}\right)$
- Each block is a value which is substituted, and then encrypted like using a codebook.
- If the same message (e.g., your IRD \#) is encrypted (with the same key) and sent twice, their ciphertexts are the same.

- uses: secure transmission of single values

Electronic Codebook Book mode

Plaintext

- Pad last block, if necessary

ECB (both encryption/decryption)

(a) Encryption

(b) Decryption

Decryption

Advantages and Limitations of ECB

- Message repetitions may show in ciphertext
- if aligned with message block
- particularly with data such graphics
- or with messages that change very little, which become a code-book analysis problem
- Weakness is due to the encrypted message blocks being independent
- Main use is sending a few blocks of data

Any ideas to overcome the ECB mode?

Cipher Block Chaining (CBC)

- message is broken into blocks
- linked together in encryption operation
- each previous cipher blocks is chained with current plaintext block
- use Initial Vector (IV) to start process
$\mathrm{C}_{\mathrm{i}}=\operatorname{DES}_{\mathrm{K} 1}\left(\mathrm{P}_{\mathrm{i}}\right.$ XOR $\left.\mathrm{C}_{\mathrm{i}-1}\right)$
$\mathrm{C}_{-1}=\mathrm{IV}$
- uses: general block oriented transmission
- e.g., IPsec uses 3DES-CBC, AES-CBC

Cipher Block Chaining (CBC)

- Pad last block, if necessary
- Random Block called IV is required to be random/pseudo random.

Cipher Block Chaining (CBC) : E/D

(a) Encryption

Advantages and Limitations of CBC

- A ciphertext block depends on all blocks before it
- So, repeated plaintext blocks are encrypted differently.
- need Initialization Vector (IV)
- must be known to sender \& receiver
- if sent in clear, attacker can change bits of first block, and change IV to compensate, hence IV must either be a fixed value (Integrity of IV should be guaranteed)
- or must be sent encrypted in ECB mode before rest of message

Error propagation in CBC

ECB vs. CBC mode

ECB mode

CBC mode

ECB vs. CBC mode

Cipher Feed back (CFB) Mode

- The plaintext is divided into segments of s bits (where $s \leq$ block-size): $P_{1}, P_{2}, P_{3}, P_{4}, \ldots$
- Encryption is used to generate a sequence of keys, each of s bits: $K_{1}, K_{2}, K_{3}, K_{4}, \ldots$
- The ciphertext is $C_{1}, C_{2}, C_{3}, C_{4}, \ldots$, where $C_{i}=P_{i} \oplus K_{i}$

Cipher Feed back (CFB) Mode

- Uses cipher block used in the previous step as input of cipher in the next step
- What does it mean "feedback"?
- Cipher is used as input of the cipher

Cipher Feed Back (CFB): Encryption

s bits

s bits

Cipher Feed Back (CFB): Decryption

- Generate key stream $K_{1}, K_{2}, K_{3}, K_{4}, \ldots$ the same way as for encryption.
- Then decrypt each ciphertext segment as:

$$
P_{i}=C_{i} \oplus K_{i}
$$

Cipher Feed Back (CFB)

- The block cipher is used as a stream cipher.
- Appropriate when data arrives in bits/bytes.
- s can be any value; a common value is $\mathrm{s}=8$.
- standard allows any number of bit (1, 8, 64 or 128 etc) to be feed back denoted CFB-1, CFB-8, CFB-64, CFB128 etc
- A ciphertext segment depends on the current and all preceding plaintext segments.
- A corrupted ciphertext segment during transmission will affect the current and next several plaintext segments.

CBC vs. CFB

CBC mode

CFB mode

Output Feed Back (OFB) mode

OFB

Output Feed Back (OFB) mode

- message is treated as a stream of bits (s bits)
- output of cipher is added to message
- output is then feed back
- feedback is independent of message
- can be computed in advance
$C_{i}=P_{i}$ XOR O_{i}
$\mathrm{O}_{\mathrm{i}}=\operatorname{DES}_{\mathrm{K} 1}\left(\mathrm{O}_{\mathrm{i}-1}\right)$
$\mathrm{O}_{-1}=\mathrm{IV}$
- uses: stream encryption on noisy channels (e.g., satellite TV transmissions etc)

CFB vs. OFB

CFB mode

OFB mode

CFB vs. OFB (contd)

CFB

OFB

Advantages and Limitations of OFB

- bit errors do not propagate
- more vulnerable to message stream modification
- a variation of a Vernam cipher
- hence must never reuse the same sequence (key+IV) ;
- otherwise 2 ciphertexts can be combined, cancelling these bits
- sender \& receiver must remain in sync

Vernam cipher: the plaintext is XORed with a random or pseudorandom stream of data (the "keystream") of the same length to generate the ciphertext

Counter (CTR)

" a "new" mode, though proposed early on

- similar to OFB but encrypts counter value rather than any feedback value
- must have a different key \& counter value for every plaintext block (never reused)

$$
C_{i}=P_{i} \operatorname{XOR} O_{i}
$$

$$
O_{i}=D E S_{K 1}(i)
$$

- uses: high-speed network encryptions
- e.g., AES-CTR (i.e., AES in CTR mode)

OCB (Offset Codebook Mode) (Counter Mode) [new] Ref: P Rogaway, OCB Mode, http://csrc.nist.gov/encryption/aes

OFB vs. CTR mode

OFB mode

CTR mode

Counter (CTR)

(a) Encryption

(b) Decryption

Q: how to generate counter?

- A counter T is initialized to some IV (nonce) and then incremented by 1 for each subsequent plaintext block.
- Counter example (128 bits/16 bytes).

66 1F 98 CD 37 A3 8B 4B 0000000000000001

Nonce (an arbitrary number)
Block number
○ 66 1F 98 CD 37 A3 8B 4B 0000000000000001 (initial)
○ 66 1F 98 CD 37 A3 8B 4B 0000000000000002 (counter 2)

- 66 1F 98 CD 37 A3 8B 4B 0000000000000003 (counter 3)

○ 66 1F 98 CD 37 A3 8B 4B 0000000000000004 (counter 4)

Advantages and Limitations of CTR

- Needs only the encryption algorithm (so do CFB and OFB)
- Fast encryption/decryption;
- blocks can be processed (encrypted or decrypted) in parallel in SW/HW; good for high speed links
- random access to encrypted data blocks
- provable security (good as other modes)
- but as in OFB, must ensure never reuse key/counter values, otherwise could break

Modes of Operation: summary

- ECB - Electronic Code Book Don't use
- CBC - Cipher Block Chaining Most popular,
- OFB - Output Feed Back
- CFB - Cipher Feed Back

Use CTR

- CTR - Counter e.g., AES-CTR

Q: What security objective does this provide?
A: Confidentiality

Q: How do we know the encryption (block cipher) is secure?

Cryptanalysis

Cryptanalysis (cont'd)

- objective to recover key not just message
- general approaches:
- cryptanalytic attack
- brute-force attack

Breaking Ciphers

- Ciphertext only (COA, Known-ciphertext)
- Attacker can only access to a set of ciphertext
- Known plaintext (KPA)
- know/suspect plaintext \& ciphertext
- Chosen plaintext (CPA)
- select plaintext to be encrypted and obtain ciphertext
- Chosen ciphertext
- select ciphertext and obtain plaintext under an unknown key
- Chosen text
- select plaintext or ciphertext to en/decrypt

Ciphertext-only attack

Known to attacker

Ciphertexts generated using the same key

1) $P_{1}, P_{2}, \ldots, P_{n}$

Objective 2) Key K
3) Algorithm: $\mathrm{C}_{\mathrm{n}+1} \rightarrow \mathrm{P}_{\mathrm{n}+1}$

Find an algorithm that can decrypt any message encrypted using the key K.

Known-plaintext attack

Known to attacker
$\left(P_{1}, C_{1}\right),\left(P_{2}, C_{2}\right), \ldots\left(P_{n}, C_{n}\right)$,

1) Key K

Objective

Attacker
 cannot select these pairs

2) Algorithm: $C_{n+1} \rightarrow P_{n+1}$

Chosen-plaintext attack

Attackers can select $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}$ before the attack begins and cannot obtain additional pair after the attack has begun.

Known to attacker

$$
\left(\mathrm{P}_{1}, \mathrm{C}_{1}\right),\left(\mathrm{P}_{2}, \mathrm{C}_{2}\right), \ldots\left(\mathrm{P}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right),
$$

1) Key K

Objective
2) Algorithm: $C_{n+1}->P_{n+1}$

Chosen-ciphertext attack

Attackers can select $C_{1}, C_{2}, \ldots, C_{n}$ before the attack begins.

Known to

 attacker

Objective 1) Key K
2) Algorithm: $\mathrm{C}_{\mathrm{n}+1} \rightarrow \mathrm{P}_{\mathrm{n}+1}$

This attack is used against public key algorithm. Attacker can by itself generate the ciphertexts using the public key of the target.

Result of Attacks

- Total break:
- found the key

1) Key K
2) Algorithm: $\mathrm{C}_{\mathrm{n}+1}->\mathrm{P}_{\mathrm{n}+1}$

- Global deduction:
- Was not successful in finding the key, but successful in finding an algorithm that can decrypt any ciphertexts of the target.
- Instance deduction:
- Obtained some plaintexts from some ciphertexts.
- Information deduction:
- Obtained a partial bits of plaintext of partial bits of the target key

Secureness of an cipher

- Computational secure
- Cost of breaking the cipher exceeds the value of the encrypted information (e.g., 1 million NZD cost vs. 1000 NZD secret)
- The time required to break the cipher exceeds the useful lifetime of the information (e.g., 1 month to break the all black's tactics)
- Provably secure:
- the security of the system can be proven to be equivalent to a hard problem
- Unconditional security
- Even if the attacker has infinite amount of computing resource, the attacker cannot succeed in cryptanalyzing the algorithm
- Only one-time pad is proven to be unconditionally secure

Brute Force Search

- always possible to simply try every key
- e.g., PIN number (0000)
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys 32 $2^{32}=4.3 \times 10^{9}$	Time required at 1 decryption $/ \mu \mathrm{s}$	Time required at 10^{6} decryptions $/ \mu \mathrm{s}$
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s}=1142$ years	2.15 milliseconds
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s}=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s}=5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years

Q: Is DES computationally secure?

Q: Why do we need public key encryptions?

