
DES and AES

Chun-Jen Chung

 Q: Why does the ciphers introduced so far
not secure?

 A: because of language characteristics

 Q: Any ideas to improve them (you
already know the answer)?

 A: Use both substitution and transposition

From classical to modern ciphers

 Consider using several ciphers in succession to
make harder, but:

• Two substitutions make a more complex substitution

• Two transpositions make more complex transposition

• But a substitution followed by a transposition makes a
new much harder cipher

 Q: What is this type of ciphers called?

 A: product ciphers

 This is bridge from classical to modern ciphers

 Q: What is most well-known and widely
used morden cipher(s)?

 A: DES, AES,…

Classification of encryption algorithms

Encryption
algorithms

Private key Public key

Block Stream

Feistel SPN etc random
Pseudo
random

Later…

DES AES

Symmetric key Asymmetric key

64 bits, 128 bits,
etc

1 bit (or 1 byte)

Stream cipher

Key

Pseudo-random
Sequence

Generator (PRNGs)

Plaintext Bitstream Ciphertext bitstream

Plaintext bitstream 1 1 1 1 1 1 1 0 0 0 0 0 0 0 …
Pesudo-random stream 1 0 0 1 1 0 1 0 1 1 0 1 0 0 …
Ciphertext stream 0 1 1 0 0 1 0 1 1 1 0 1 0 0 …

vs. random
(TRNGs)

operation

Q: Caesar is a stream cipher?

Block cipher

n bits

Plaintext …

n bits n bits n bits X bits
padd
ing

n bits

Block
cipher

K bits Key

n bit
ciphertext

Common block sizes:

n = 64, 128, 256 bits

Common key sizes:

k = 40, 56, 64, 80, 128,168, 192, 256 bits

The encryption is performed using one of the
operation modes, we will visit it later.

Stream cipher vs. Block cipher

Stream cipher Block cipher

• High diffusion:
Information from the plaintext is
diffused into several ciphertext
symbols.

• Immunity to insertion of
symbols:
Because blocks of symbols are
enciphered, it is impossible to
insert a single symbol into one
block. The length of the block
would then be incorrect

Pros.

• Speed of transformation:
Because each symbol is
encrypted without regard for
any other plaintext symbols,
each symbol can be encrypted as
soon as it is read.

• Low error propagation:
Because each symbol is
separately encoded

Cons.
• Low diffusion
• Susceptibility to malicious
insertions and modifications

• Slowness of encryption (c.f.
faster than public key)
• Error propagation

DES (Data Encryption Standard)

Block cipher: DES, AES

Private key

Block Stream

Feistel SPN etc random
Pseudo
random

DES AES

Symmetric key

DES: Data Encryption Standard (1970s)
or
DEA: Data Encryption Algorithm

AES: Advanced Encryption Standard (2001)

DES Structure

DES

64 bits
plaintext

64 bits
ciphtertext

64 bits key

(56 bits key + 8 bit parity)

The encryption and decryption operations

are very similar, even identical in some

cases, requiring only a reversal of the key

schedule.

DES Structure

DES

64 bits
plaintext

64 bits
ciphtertext

64 bits
keys

Plaintext

IP

Cipthertext

L0 R0

L16

L1 R1

R16

IP-1

f ＋

f ＋

…

32bit 32bit

48 bit K1

64bit at a time

16
rounds of

permutations
and

substitution

48 bit K16

Initial permutation rearranges 64 bits

(no cryptographic effect)

IP(M) = L0R0

Li = Ri-1

Ri = Li-1 f(Ri-1, Ki)
C = IP-1(R16L16)
1 <= i <=15

Overview of DES

 Block cipher: 64 bits
at a time

 Initial permutation
rearranges 64 bits (no
cryptographic effect)

 Encoding is in 16
rounds

plaintext

INITIAL PERMUTATION

ROUND 1

ROUND 2

ROUND 16

INITIAL PERMUTATION-1

...

ciphertext

Overview of DES

Initialization Termination Round 1 Round 2 … Round 16

Plaintext Ciphertext Key1 Key2 Key i Key16

16 rounds of permutations and substitution

DES is a 64-bit block cipher. Both the plaintext and ciphertext are 64 bits wide.

The key is 64-bits wide, but every eighth bit is a parity bit yielding a 54-bit key.

Initialization

Plaintext
Initial

Permutation

(IP)

Right Half

Left Half

Round

Key

Initialization Termination Round 1 Round 2 … Round 16

Plaintext
Ciphertext

Key1 Key2 Key i Key16

Termination

Ciphertext
Reverse Initial

Permutation

Right Half

Left Half

Round

Key

Initialization Termination Round 1 Round 2 … Round 16

Plaintext
Ciphertext

Key1 Key2 Key i Key16

A round

Right Half

Left Half

Transformed

Key (48-bit)

Permutations and

substitution XOR

Left Half

Right Half

Initialization Termination Round 1 Round 2 … Round 16

Plaintext
Ciphertext

Key1 Key2 Key i Key16

Right Half Transformed

Key (48-bit)

S-Box

Substitution

P-Box

Permutation XOR
E-Box

Permutation

8 S-Boxes are used by the P-Box

Right Half

Left Half

Transformed

Key (48-bit)

Permutations and

substitution XOR

Left Half

Right Half

Feistel Function (f function)

 E-box

• Expansion permutation
32-bits 48-bits

 Key mixing

• XOR with 48-bits subkey

 S-boxes (substitution)

• Non-linear transformation

 P-box (permutation)

• Rearrange output
with fixed permutation function

E-box

 Expansion function

• 32 bits 48 bits

S1

S2

S3

S4

S5

S6

S7

S8

Add a copy of the immediately adjacent bit

16 bits appear twice, in the expansion

S-box

 Only non-linear transformation in DES,
the core of security of DES.

 B = b1b2b3b4b5b6

• b1b6 row (22: 0~3)

• b2b3b4b5 column (24: 0~15)

 C = S(row, column)
 E.g.
 B = 101111

 C = S(3,7) = 7

 = 0111

 B = 011011, C=?

S-box

B (6 bit)

C (4 bit)

DES Key Generation

 Select bits from PC1,

remove parity-check bits

(8,16,4,32,40,48,56,64)

28 bits 28 bits

48 bits

48 bits

48 bits

PC-2 selects the 48-bit subkey

for each round from the 56-bit

key-schedule state

Key transform

Initialization Termination Round 1 Round 2 … Round 16

Plaintext
Ciphertext

Key1 Key2 Key i Key16

Key transform

64-bit

Key
Remove

parity bit
56-bit

Key
split

28-bit left

semikey

28-bit right

semikey

shift

shift

28-bit shifted

left semi-key

28-bit shifted

right semi-key

Compression

Permutation
48-bit

semi-key

Study simple DES

 8 bits block with a 10 bits key

 The encryption process is :
• Initial Permutation

• Function fk1

• Switch of the key halves

• Function fk2

• Final Permutation (inverse of initial
permutation)

DES: security concern

 56 bit key is too short

• Can be broken on average in 2^55 ≈3.6*10^16
trials

• Moore’s law: speed of processor doubles per
1.5 yr

• 1997: 3500 machines broke DES in about 4
months

• 1998: 1M dollar machine broke DES in about 4
days

• …

DES: security concern

 Weak Keys

• 56 bit key is too short

• Can be broken on average in 256 ≈7.21*1016 trials

• Moore’s law: speed of processor doubles per 1.5 yr

• Keys make the same sub-key in more then 1 round.

• DES has 4 week keys
• 01010101 01010101

• FEFEFEFE FEFEFEFE

• E0E0E0E0 F1F1F1F1

• 1F1F1F1F 0E0E0E0E

• Using weak keys, the outcome of the PC1 to sub-keys being either all
0, all 1, or alternating 0-1 patterns.

• Another problem: Eweak-key(Eweak-key(x)) = x.

DES: security concern

 Cracking the 56-bit DES Encryption Algorithm

Jan 1997

2304 hours

Feb 1998

984 hours

July 1998

56 hours Jan 1999

22.25 hours

Multiple Encryption & DES

 DES is not secure enough.

 The once large key space, 256, is now too small.

 In 2001, NIST published the Advanced

Encryption Standard (AES) as an alternative.

 But users in commerce and finance are not ready

to give up on DES.

 Solution: to use multiple DES with multiple keys

Q: how many times can we use?

A: 2, 3, …

Double-DES

 2-DES

DES

plaintext

DES
P

ciphertext

C

Key K1 Key K2

encryption encryption

P’ = EK1(P) C = EK2(P’)

P’

P = DK1(C’) C’ = DK2(C)

Any problem for this scheme?

Attack Double-DES

 2-DES: C = EK2(EK1(P)) , P = DK1(DK2(C))

 So, X = EK1(P) = DK2(C)

DES

Chosen
plaintext

DES
P compare

Chosen
ciphertext

C

Key K1 Key K2

encryption decryption

X

(1) try all 256 possible keys for K1 (2) try all 256 possible keys for K2

(3) If EK1’(P) = DK2’(C), try the keys on another (P’, C’)

(4) If EK1’(P’) = DK2’(C’), (K1’, K2’) = (K1, K2) with high probability

Takes 2x256=257steps; not much more than attacking 1-DES.

Man-In-The-Middle

Triple-DES with Two-Keys

 hence must use 3 encryptions

• would seem to need 3 distinct keys

 In practice: C = EK1(DK2(EK1(P)))

• Also referred to as EDE encryption

 Reason:

• if K1=K2, then 3DES = 1DES. Thus, a 3DES
software can be used as a single-DES.

 Standardized in ANSI X9.17 & ISO8732

 No current known practical attacks

• Q: What about the meet-in-the-middle attack?

Meet-in-the-Middle Attack on 3DES

1. For each possible key for K1, encrypt P to produce a
possible value for A.

2. Using this A, and C, attack the 2DES to obtain a pair of
keys (K2, K1’).

3. If K1’ = K1, try the key pair (K1, K2) on another (C’,P’).

4. If it works, (K1, K2) is the key pair with high
probability.

5. It takes O(255 x 256) = O(2111) steps on average.

E D E P

K1 K2 K1

C
A B

Triple-DES with Three-Keys

 Encryption: C = EK3(DK2(EK1(P))).

 If K1 = K3, we have 3DES with 2 keys.

 If K1 = K2 = K3, we have the regular DES.

 So, 3DES w/ 3keys is backward compatible
with 3DES w/ 2 keys and with the regular DES

 Some internet applications have adopted 3DES
with three keys.

• E.g., PGP (pretty good privacy) and S/MIME

(Secure/Multipurpose Internet Mail Extensions).

Triple-DES

 Triple DES

DES DES

Key ? Key ?

encipher decipher

DES

Key ?

encipher

P C

With two keys: EK1(DK2(E(K1(M))) = C

With three keys: EK1(DK2(EK3(M))) = C

AES (Advanced Encryption
Standard)

AES

 DES cracked, Triple-DES slow: what next?

 1997 NIST called for algorithms

 Final five

• Rijndael (Two Belgians: Joan Daemen, Vincent
Rijmen),

• Serpent(Ross Anderson),

• Twofish(Bruce Schneier),

• RC6(Don Rivest, Lisa Yin),

• MARS (Don Coppersmith, IBM)

 2000 Rijndael won

 2002 Rijndael became AES

Overview of AES

 Based on a design principle known as
substitution-permutation network (SPN)

 Block length is limited to 128 bit

 The key size can be independently
specified to 128, 192 or 256 bits

 Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Number of rounds 10 12 14

Expanded key size (words/byte) 44/176 52/208 60/240

General design of AES encryption cipher

AES

 Each round uses 4 functions

• ByteSub (nonlinear layer) :

• referred to as an S-box; byte-by-byte substitution

• ShiftRow (linear mixing layer)

• A simple permutation row by row

• MixColumn (nonlinear layer)

• A substitution that alters each bye in a column as
function of all of the bytes in column

• AddRoundKey (key addition layer)

• A simple bitwise XOR of the current block with a
portion of the expanded key

http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/rijndael_ingles2004.swf

AES 4 Steps

DES vs. AES

DES AES

Date 1976 1999

Block size 64 128

Key length 56 128, 192, 256

Number of rounds 16 10,12,14

Encryption primitives Substitution, permutation Substitution, shift, bit mixing

Cryptographic primitives Confusion, diffusion Confusion, diffusion

Structure Feistel
SPN(substitution-permutation

network)

Design Open Open

Design rationale Closed Open

Selection process Secret
Secret, but accept open public

comment

Source IBM, enhanced by NSA Independent cryptographers

Modes of operation

Q: If block size is bigger than 64
bits in case of using DES?

Block cipher

n bits

Plaintext …

n bits n bits n bits X bits
padd
ing

n bits

Block
cipher

K bits Key

n bit
ciphertext

Common block sizes:

n = 64, 128, 256 bits

Common key sizes:

k = 40, 56, 64, 80, 128,168, 192, 256 bits

The encryption is performed using one of the
operation modes

Modes of Operation

 block ciphers encrypt fixed size blocks

• e.g., DES encrypts 64-bit blocks with 56-bit
key

 need some way to en/decrypt arbitrary
amounts of data in practice

 ANSI X3.106-1983 Modes of Use (now
FIPS 81) defines 4 possible modes

 subsequently 5 defined for AES & DES

 have block and stream modes

Modes of Operation

 ECB – Electronic Code Book

 CBC – Cipher Block Chaining

 OFB – Output Feed Back

 CFB – Cipher Feed Back

 CTR - Counter

Most popular

Electronic Codebook Book (ECB)

 Message (plaintext) is broken into
independent blocks

 Each block is encrypted independently of
the other blocks
Ci = DESK1(Pi)

 Each block is a value which is substituted,
and then encrypted like using a codebook.

• If the same message (e.g., your IRD #) is

encrypted (with the same key) and sent twice,

their ciphertexts are the same.

 uses: secure transmission of single values

Electronic Codebook Book mode

• Pad last block, if necessary

P1 P2 P3 P4

E E E E

C1 C2 C3 C4

pad

Plaintext

ECB (both encryption/decryption)

Decryption

Advantages and Limitations of ECB

 Message repetitions may show in
ciphertext

• if aligned with message block

• particularly with data such graphics

• or with messages that change very little,
which become a code-book analysis problem

 Weakness is due to the encrypted message
blocks being independent

 Main use is sending a few blocks of data

Any ideas to overcome the ECB
mode?

Cipher Block Chaining (CBC)

 message is broken into blocks

 linked together in encryption operation

 each previous cipher blocks is chained
with current plaintext block

 use Initial Vector (IV) to start process
Ci = DESK1(Pi XOR Ci-1)

C-1 = IV

 uses: general block oriented transmission

• e.g., IPsec uses 3DES-CBC, AES-CBC

Cipher Block Chaining (CBC)

• Pad last block, if necessary
• Random Block called IV is required to be random/pseudo random.

64 64 64 46

ENC ENC ENC ENC

C-1 C-2 C-3 C-4

pad

P-1 P-2 P-3 P-4

IV

Initialization

Vector

XOR

Cipher Block Chaining (CBC) : E/D

Advantages and Limitations of CBC

 A ciphertext block depends on all blocks
before it

 So, repeated plaintext blocks are encrypted
differently.

 need Initialization Vector (IV)
• must be known to sender & receiver

• if sent in clear, attacker can change bits of first block,
and change IV to compensate, hence IV must either be
a fixed value (Integrity of IV should be guaranteed)

• or must be sent encrypted in ECB mode before rest of
message

Error propagation in CBC

IV

Cipher

block1

Plain

block 4

encryption

Cipher

Block 2

Plain

block 3

Cipher

block 4

Plain

block 1

Cipher

block 3

Plain

block 2

encryption encryption encryption

Broken

Affected

ECB vs. CBC mode

Plain block i

Encryption

cipher block i

Plain block i

encryption

Cipher block i

Cipher block

in (i-1) step

ECB mode CBC mode

ECB vs. CBC mode

ECB

CBC

Cipher Feed back (CFB) Mode

1 2 3 4

 bi The plaintext is divided into segments of

 (where block-size)

t

: , , , ,

s

 s P P P P

s

1 2 3 4

 Encryption is used to generate a sequence of keys,

 each of bits: , , , , s K K K K

1 2 3 4 The ciphertext is , , , , , where

 i i i

C C C C

C P K

Cipher Feed back (CFB) Mode

 Uses cipher block used in the previous
step as input of cipher in the next step

 What does it mean “feedback”?

• Cipher is used as input of the cipher

Cipher Feed Back (CFB): Encryption

…

…

s bits

s bits

s bits

s bits

…

s bits

s bits

Cipher Feed Back (CFB): Decryption

1 2 3 4 Generate key stream , , , ,

 the same way as for encryption.

K K K K

It does not decrypt

but encrypt

 Then decrypt each ciphertext segment as:

 i i iP C K

Cipher Feed Back (CFB)

 The block cipher is used as a stream cipher.

 Appropriate when data arrives in bits/bytes.

• s can be any value; a common value is s = 8.

• standard allows any number of bit (1, 8, 64 or 128 etc)
to be feed back denoted CFB-1, CFB-8, CFB-64, CFB-
128 etc

 A ciphertext segment depends on the current
and all preceding plaintext segments.

 A corrupted ciphertext segment during
transmission will affect the current and next
several plaintext segments.

CBC vs. CFB

Plaintext

block

Ciphertext

block

Cipher block

in (i-1) step

CBC mode CFB mode

encrypt

Plaintext

block

Ciphertext

 block

encrypt

Cipher block

in (i-1) step

Key stream

Output Feed Back (OFB) mode

OFB

Output Feed Back (OFB) mode

 message is treated as a stream of bits (s bits)

 output of cipher is added to message

 output is then feed back

 feedback is independent of message

 can be computed in advance
Ci = Pi XOR Oi

Oi = DESK1(Oi-1)

O-1 = IV

 uses: stream encryption on noisy channels
(e.g., satellite TV transmissions etc)

CFB vs. OFB

CFB mode

encrypt
Plaintext

block

Ciphertext

block

Cipher block

in (i-1) step

Key stream

Cipher block

in (i+1) step

encrypt

Ciphertext

block

Plaintext

block

Cipher block

in (i-1) step

OFB mode

Cipher block

in (i+1) step

Key stream

CFB vs. OFB (contd)

CFB OFB

Advantages and Limitations of OFB

 bit errors do not propagate

 more vulnerable to message stream modification

 a variation of a Vernam cipher

• hence must never reuse the same sequence
(key+IV) ;

• otherwise 2 ciphertexts can be combined,
cancelling these bits

 sender & receiver must remain in sync

Vernam cipher: the plaintext is XORed with a random or pseudorandom stream of

data (the "keystream") of the same length to generate the ciphertext

Counter (CTR)

 a “new” mode, though proposed early on

 similar to OFB but encrypts counter value
rather than any feedback value

 must have a different key & counter value
for every plaintext block (never reused)
Ci = Pi XOR Oi

Oi = DESK1(i)

 uses: high-speed network encryptions

• e.g., AES-CTR (i.e., AES in CTR mode)
OCB (Offset Codebook Mode) (Counter Mode)

[new] Ref: P Rogaway, OCB Mode, http://csrc.nist.gov/encryption/aes

OFB vs. CTR mode

encrypt
Plaintext

block

Ciphertext

block

CTR

Key stream

encrypt

Ciphertext

block

Plaintext

block

Cipher block

in (i-1) step

OFB mode

Cipher block

in (i+1) step

Key stream

CTR mode

Use counter

Counter (CTR)

Q: how to generate counter?

It encrypts

CTR

 A counter T is initialized to some IV (nonce) and
then incremented by 1 for each subsequent
plaintext block.

 Counter example (128 bits/16 bytes).

 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 01

Nonce (an arbitrary number) Block number

o 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 01 (initial)

o 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 02 (counter 2)

o 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 03 (counter 3)

o 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 04 (counter 4)

 ⋮ ⋮

Advantages and Limitations of CTR

 Needs only the encryption algorithm (so
do CFB and OFB)

 Fast encryption/decryption;

• blocks can be processed (encrypted or
decrypted) in parallel in SW/HW; good for
high speed links

 random access to encrypted data blocks

 provable security (good as other modes)

 but as in OFB, must ensure never reuse
key/counter values, otherwise could break

Modes of Operation: summary

 ECB – Electronic Code Book

 CBC – Cipher Block Chaining

 OFB – Output Feed Back

 CFB – Cipher Feed Back

 CTR - Counter

Most popular,
e.g., DES-CBC

e.g., AES-CTR

Q: What security objective does this provide?

A: Confidentiality

Don’t use

Use CTR

Q: How do we know the
encryption (block cipher) is

secure?

Cryptanalysis

Encryption

algorithm

Decryption

algorithm

Attack(s)

plantext plantext ciphertext

public key

 public key directory

Sender
receiver

 private key

Cryptanalysis

Cryptanalysis (cont’d)

 objective to recover key not just message

 general approaches:

• cryptanalytic attack

• brute-force attack

Breaking Ciphers

 Ciphertext only (COA, Known-ciphertext)
• Attacker can only access to a set of ciphertext

 Known plaintext (KPA)
• know/suspect plaintext & ciphertext

 Chosen plaintext (CPA)
• select plaintext to be encrypted and obtain ciphertext

 Chosen ciphertext
• select ciphertext and obtain plaintext under an unknown

key

 Chosen text
• select plaintext or ciphertext to en/decrypt

Ciphertext-only attack

Known to
attacker

C1, C2, …, Cn

Objective

1) P1, P2, …, Pn

2) Key K

3) Algorithm: Cn+1 -> Pn+1

Ciphertexts
generated
using the same
key

Find an algorithm
that can decrypt
any message
encrypted using
the key K.

Known-plaintext attack

Known to
attacker

(P1,C1), (P2,C2),, …(Pn,Cn),

Objective
1) Key K

2) Algorithm: Cn+1 -> Pn+1

Attacker
cannot select
these pairs

Chosen-plaintext attack

Known to
attacker

(P1,C1), (P2,C2),, …(Pn,Cn),

Objective
1) Key K

2) Algorithm: Cn+1 -> Pn+1

Attackers can select P1, P2, …, Pn before the
attack begins and cannot obtain additional
pair after the attack has begun.

Chosen-ciphertext attack

Known to
attacker

(P1,C1), (P2,C2),, …(Pn,Cn),

Objective
1) Key K

2) Algorithm: Cn+1 -> Pn+1

Attackers can select C1, C2, …, Cn before the
attack begins.

This attack is used against public key algorithm.
Attacker can by itself generate the ciphertexts
using the public key of the target.

Result of Attacks

 Total break:

• found the key

 Global deduction:

• Was not successful in finding the key, but successful
in finding an algorithm that can decrypt any
ciphertexts of the target.

 Instance deduction:

• Obtained some plaintexts from some ciphertexts.

 Information deduction:

• Obtained a partial bits of plaintext of partial bits of
the target key

Objective
1) Key K

2) Algorithm: Cn+1 -> Pn+1

Secureness of an cipher

 Computational secure
• Cost of breaking the cipher exceeds the value of the encrypted

information (e.g., 1 million NZD cost vs. 1000 NZD secret)

• The time required to break the cipher exceeds the useful lifetime
of the information (e.g., 1 month to break the all black’s tactics)

 Provably secure:
• the security of the system can be proven to be equivalent to a

hard problem

 Unconditional security
• Even if the attacker has infinite amount of computing resource,

the attacker cannot succeed in cryptanalyzing the algorithm

• Only one-time pad is proven to be unconditionally secure

Brute Force Search

 always possible to simply try every key
• e.g., PIN number (0000)

 most basic attack, proportional to key size

 assume either know / recognise plaintext

Key Size
(bits)

Number of
Alternative Keys

Time required at 1
decryption/µ s

Time required at
106 decryptions/µ s

32 232 = 4.3 109 231 µ s = 35.8 minutes 2.15 milliseconds

56 256 = 7.2 1016 255 µ s = 1142 years 10.01 hours

128 2128 = 3.4 1038 2127 µ s= 5.4 1024 years 5.4 1018 years

168 2168 = 3.7 1050 2167 µ s= 5.9 1036 years 5.9 1030 years

26 characters
(permutation)

26! = 4 1026
2 1026 µ s= 6.4 1012
years

6.4 106 years

Q: Is DES computationally secure?

Q: Why do we need public key
encryptions?

