DES and AES

Short Version

Chun-Jen (James) Chung

Classification of encryption algorithms

Stream cipher

Plaintext bitstream
Pesudo-random stream
Ciphertext stream

11111110000000 ...
10011010110100 ...
$01100101110100 \ldots$

Q: Caesar is a stream cipher?

Block cipher

n bit ciphertext

The encryption is performed using one of the operation modes, we will visit it later.

Common block sizes:
$\mathrm{n}=64,128,256$ bits

Common key sizes:
$k=40,56,64,80,128,168,192,256$ bits

Stream cipher vs. Block cipher

Stream cipher

Block cipher

- Speed of transformation:

Because each symbol is encrypted without regard for any other plaintext symbols, each symbol can be encrypted as
Pros. soon as it is read.

- Low error propagation: Because each symbol is separately encoded

- High diffusion:

Information from the plaintext is diffused into several ciphertext symbols.

- Immunity to insertion of symbols:
Because blocks of symbols are enciphered, it is impossible to insert a single symbol into one block. The length of the block would then be incorrect
- Low diffusion

Cons. - Susceptibility to malicious insertions and modifications

- Slowness of encryption (c.f. faster than public key)
- Error propagation

DES (Data Encryption Standard)

Block cipher: DES, AES

DES: Data Encryption Standard (1970s)
or
DEA: Data Encryption Algorithm
AES: Advanced Encryption Standard (2001)

DES Structure

DES Structure

Feistel Function (f function)

- E-box
- Expansion permutation 32-bits $\rightarrow 48$-bits
- Key mixing
- XOR with 48-bits subkey
- S-boxes (substitution)
- Non-linear transformation
- P-box (permutation)
- Rearrange output
 with fixed permutation function

E-box

- Expansion function
- 32 bits $\rightarrow 48$ bits

Add a copy of the immediately adjacent bit 16 bits appear twice, in the expansion

S-box

- Only non-linear transformation in DES, the core of security of DES.
- $\mathrm{B}=\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4} \mathrm{~b}_{5} \mathrm{~b}_{6}$
$-\mathrm{b}_{1} \mathrm{~b}_{6} \rightarrow$ row ($2^{2}: 0 \sim 3$)
$-\mathrm{b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4} \mathrm{~b}_{5} \rightarrow$ column (24: 0~15)

$\mathrm{C}=\mathrm{S}$ (row, column)
- E.g.

B $=101111$
$\mathrm{C}=\mathrm{S}(3,7)=7$
$=\underline{0111}$

- $\mathrm{B}=011011, \mathrm{C}=$?

DES Key Generation

64 bit key

Left						
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
Right						
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

PC-2 selects the 48-bit subkey for each round from the 56-bit key-schedule state

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

DES: security concern

- Weak Keys
- 56 bit key is too short
- Can be broken on average in $2^{56} \approx 7.21^{*} 10^{16}$ trials
- Moore's law: speed of processor doubles per 1.5 yr
- Keys make the same sub-key in more then 1 round.
- DES has 4 week keys
- 0101010101010101
- FEFEFEFE FEFEFEFE
- E0E0E0E0 F1F1F1F1
- 1F1F1F1F 0E0E0E0E
- Using weak keys, the outcome of the PC1 to sub-keys being either all 0 , all 1, or alternating 0-1 patterns.
- Another problem: $\mathrm{E}_{\text {weak-key }}\left(\mathrm{E}_{\text {weak-key }}(\mathrm{x})\right)=\mathrm{x}$.

Multiple Encryption \& DES

- DES is not secure enough.
- The once large key space, 2^{56}, is now too small.
- In 2001, NIST published the Advanced Encryption Standard (AES) as an alternative.
- But users in commerce and finance are not ready to give up on DES.
- Solution: to use multiple DES with multiple keys

Q: how many times can we use? A: $2,3, \ldots$

Double-DES

- 2-DES

Any problem for this scheme?

Attack Double-DES

- 2-DES: $\mathrm{C}=\mathrm{E}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right), \mathrm{P}=\mathrm{D}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}(\mathrm{C})\right)$
- So, $\mathrm{X}=\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})=\mathrm{D}_{\mathrm{K} 2}(\mathrm{C})$

(1) try all $2{ }^{56}$ possible keys for K1
(2) try all 2^{56} possible keys for K2
(3) If $\mathrm{E}_{\mathrm{K} 1^{\prime}}(\mathrm{P})=\mathrm{D}_{\mathrm{K}^{\prime}}(\mathrm{C})$, try the keys on another $\left(\mathrm{P}^{\prime}, \mathrm{C}^{\prime}\right)$
(4) If $\mathrm{E}_{\mathrm{K} 1^{\prime}}\left(\mathrm{P}^{\prime}\right)=\mathrm{D}_{\mathrm{K} 2^{\prime}}\left(\mathrm{C}^{\prime}\right),\left(\mathrm{K} 1^{\prime}, \mathrm{K} 2^{\prime}\right)=(\mathrm{K} 1, \mathrm{~K} 2)$ with high probability

Takes $2 \times{ }^{256}=2{ }^{57}$ steps; not much more than attacking 1-DES.

Triple-DES with Two-Keys

- hence must use 3 encryptions
- would seem to need 3 distinct keys
- In practice: $\mathrm{C}=\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)$
- Also referred to as EDE encryption
- Reason:
- if K1=K2, then 3DES = 1DES. Thus, a 3DES software can be used as a single-DES.
- Standardized in ANSI X9.17 \& ISO8732
- No current known practical attacks
- Q: What about the meet-in-the-middle attack?

Meet-in-the-Middle Attack on 3DES

1. For each possible key for K1, encrypt P to produce a possible value for A.
2. Using this A, and C, attack the 2DES to obtain a pair of keys (K2, K1').
3. If $K 1^{\prime}=K 1$, try the key pair $(K 1, K 2)$ on another $\left(C^{\prime}, \mathrm{P}^{\prime}\right)$.
4. If it works, (K1, K2) is the key pair with high probability.
5. It takes $\mathrm{O}\left(2^{56} \times 2^{56}\right)=\mathrm{O}\left(2^{112}\right)$ steps on average.

Triple-DES with Three-Keys

- Encryption: $\mathrm{C}=\mathrm{E}_{\mathrm{K} 3}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)$.
- If $\mathrm{K} 1=\mathrm{K} 3$, we have 3DES with 2 keys.
- If $\mathrm{K} 1=\mathrm{K} 2=\mathrm{K} 3$, we have the regular DES.
- So, 3DES w/ 3keys is backward compatible with 3DES w/ 2 keys and with the regular DES
- Some internet applications have adopted 3DES with three keys.
- E.g., PGP (pretty good privacy) and S/MIME
(Secure/Multipurpose Internet Mail Extensions).

AES (Advanced Encryption Standard)

Overview of AES

- Based on a design principle known as substitution-permutation network (SPN)
- Block length is limited to 128 bit
- The key size can be independently specified to 128,192 or 256 bits

Key size (words/bytes/bits)	$4 / 16 / 128$	$6 / 24 / 192$	$8 / 32 / 256$
Number of rounds	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$
Expanded key size (words/byte)	$44 / 176$	$52 / 208$	$60 / 240$

General design of AES encryption cipher

128-bit plaintext

AES

- Each round uses 4 functions
- ByteSub (nonlinear layer) :
- referred to as an S-box; byte-by-byte substitution
- ShiftRow (linear mixing layer)
- A simple permutation row by row
- MixColumn (nonlinear layer)
- A substitution that alters each bye in a column as function of all of the bytes in column
- AddRoundKey (key addition layer)
- A simple bitwise XOR of the current block with a portion of the expanded key
http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/rijndael_ingles2004.swf

AES 4 Steps

$a_{0,0}$	$a_{0,1}$	$\mathrm{a}_{0,2}$	$a_{0,3}$		$\mathrm{b}_{0,0}$	$\mathrm{b}_{0,1}$	$\mathrm{b}_{0,2}$	$\mathrm{b}_{0,3}$
$\mathrm{a}_{1,0}$	$\mathrm{a}_{1,1}$	$\mathrm{a}_{1,2}$	$\mathrm{a}_{1,3}$	SubBytes	$\mathrm{b}_{1,0}$	$\mathrm{b}_{1,1}$	$\mathrm{b}_{1,2}$	$\mathrm{b}_{1,3}$
$\mathrm{a}_{2,0}$	a_{2}	$a_{2,2}$	$3_{2,3}$		$\mathrm{b}_{2,0}$	b_{2}	$\mathrm{b}_{2,2}$	${ }_{2}$
$\mathrm{a}_{3,0}$	$\mathrm{a}_{3,1}$	$a_{3,2}$	${ }^{3}$		$\mathrm{b}_{3,0}$		3.2	$\mathrm{b}_{3,3}$

DES vs. AES

	DES	AES
Date	1976	1999
Block size	64	$\mathbf{1 2 8}$
Key length	56	$128,192,256$
Number of rounds	16	$10,12,14$
Encryption primitives	Substitution, permutation	Substitution, shift, bit mixing
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion
Structure	Feistel	SPN(substitution-permutation network)
Design	Open	Open
Design rationale	Closed	Open
Selection process	Secret	Secret, but accept open public comment
Source	IBM, enhanced by NSA	Independent cryptographers

Modes of operation

Q: If block size is bigger than 64 bits in case of using DES?

Block cipher

n bit ciphertext

The encryption is performed using one of the operation modes

Common block sizes:
$\mathrm{n}=64,128,256$ bits

Common key sizes:
$k=40,56,64,80,128,168,192,256$ bits

Modes of Operation

- ECB - Electronic Code Book
- CBC - Cipher Block Chaining Most popular
- OFB - Output Feed Back
- CFB - Cipher Feed Back
- CTR - Counter

Modes of Operation: summary

- ECB - Electronic Code Book Don't use
- CBC - Cipher Block Chaining Most popular,
- OFB - Output Feed Back
- CFB - Cipher Feed Back

Use CTR

- CTR - Counter e.g., AES-CTR

Q: What security objective does this provide?
A: Confidentiality

Operation modes

Table 8.1 Summary of operation modes

Operation Mode	Description	Type of Result	Data Unit Size
ECB	Each n-bit block is encrypted independently with the same cipher key.	Block cipher	n
CBC	Same as ECB, but each block is first exclusive-ored with the previous ciphertext.	Block cipher	n
CFB	Each r-bit block is exclusive-ored with an r-bit key, which is part of previous cipher text	Stream cipher	$r \leq n$
OFB	Same as CFB, but the shift register is updated by the previous r-bit key.	Stream cipher	$r \leq n$
CTR	Same as OFB, but a counter is used instead of a shift register.	Stream cipher	n

Q: How do we know the encryption (block cipher) is secure?

Cryptanalysis

Breaking Ciphers

- Ciphertext only (COA, Known-ciphertext)
- Attacker can only access to a set of ciphertext
- Known plaintext (KPA)
- know/suspect plaintext \& ciphertext pairs
- Chosen plaintext (CPA)
- select plaintext to be encrypted and obtain ciphertext
- Chosen ciphertext
- select ciphertext and obtain plaintext under an unknown key
- Chosen text
- select plaintext or ciphertext to en/decrypt

Ciphertext-only attack (COA)

Known to attacker

Ciphertexts generated using the same key

1) $P_{1}, P_{2}, \ldots, P_{n}$

Objective 2) Key K
3) Algorithm: $\mathrm{C}_{\mathrm{n}+1} \rightarrow \mathrm{P}_{\mathrm{n}+1}$

Find an algorithm that can decrypt any message encrypted using the key K.

Known-plaintext attack (KPA)

Known to attacker

$$
\left(\mathrm{P}_{1}, \mathrm{C}_{1}\right),\left(\mathrm{P}_{2}, \mathrm{C}_{2}\right), \ldots\left(\mathrm{P}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right),
$$

1) Key K

Objective

Attacker obtains some (P, C) pairs, but cannot select any P_{i} and get C_{i}
2) Algorithm: $C_{n+1}->P_{n+1}$

Chosen-plaintext attack

Attackers can select any P_{i}, and get system to tell him what the C_{i} is.

Known to attacker
$\left(P_{1}, C_{1}\right),\left(P_{2}, C_{2}\right), \ldots\left(P_{n}, C_{n}\right)$,

1) Key K

Objective
2) Algorithm: $C_{n+1}->P_{n+1}$

Chosen-ciphertext attack

Attackers can select $C_{1}, C_{2}, \ldots, C_{n}$ before the attack begins.

Known to

 attacker

Objective 1) Key K
2) Algorithm: $C_{n+1}->P_{n+1}$

This attack is used against public key algorithm. Attacker can generate the ciphertexts by himself using the public key of the target.

Result of Attacks

- Total break:
- found the key

1) Key K
2) Algorithm: $\mathrm{C}_{\mathrm{n}+1}->\mathrm{P}_{\mathrm{n}+1}$

- Global deduction:
- Was not successful in finding the key, but successful in finding an algorithm that can decrypt any ciphertexts of the target.
- Instance deduction:
- Obtained some plaintexts from some ciphertexts.
- Information deduction:
- Obtained a partial bits of plaintext of partial bits of the target key

Secureness of an cipher

- Computational secure
- Cost of breaking the cipher exceeds the value of the encrypted information
- The time required to break the cipher exceeds the useful lifetime of the information (e.g., 1 month to break the all black's tactics)
- Provably secure:
- the security of the system can be proven to be equivalent to a hard problem
- Unconditional security
- Even if the attacker has infinite amount of computing resource, the attacker cannot succeed in cryptanalyzing the algorithm
- Only one-time pad is proven to be unconditionally secure

Brute Force Search

- always possible to simply try every key
- e.g., PIN number (0000)
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys 32 $2^{32}=4.3 \times 10^{9}$	Time required at 1 decryption $/ \mu \mathrm{s}$	Time required at 10^{6} decryptions $/ \mu \mathrm{s}$
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s}=1142$ years	2.15 milliseconds
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s}=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s}=5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years

Q: Is DES computationally secure?

Q: Why do we need public key encryptions?

