DES and AES

Short Version

Chun-Jen (James) Chung

Classification of encryption algorithms

Stream cipher

Plaintext bitstream Pesudo-random stream Ciphertext stream

 $\begin{array}{c} 11111110000000 \dots \\ 10011010110100 \dots \\ 01100101110100 \dots \end{array}$

Q: Caesar is a stream cipher?

Block cipher

Common block sizes: n = 64, 128, 256 bits

Common key sizes: k = 40, 56, 64, 80, 128,168, 192, 256 bits

Stream cipher vs. Block cipher

	Stream cipher	Block cipher
Pros.	 Speed of transformation: Because each symbol is encrypted without regard for any other plaintext symbols, each symbol can be encrypted as soon as it is read. Low error propagation: Because each symbol is separately encoded 	 High diffusion: Information from the plaintext is diffused into several ciphertext symbols. Immunity to insertion of symbols: Because blocks of symbols are enciphered, it is impossible to insert a single symbol into one block. The length of the block would then be incorrect
Cons.	 Low diffusion Susceptibility to malicious insertions and modifications 	 Slowness of encryption (c.f. faster than public key) Error propagation

DES (Data Encryption Standard)

Block cipher: DES, AES

DES: Data Encryption Standard (1970s) or DEA: Data Encryption Algorithm AES: Advanced Encryption Standard (2001)

DES Structure

DES Structure

Feistel Function (f function)

- E-box
 - Expansion permutation
 32-bits → 48-bits
- Key mixing
 - XOR with 48-bits subkey
- S-boxes (substitution)
 - Non-linear transformation
- P-box (permutation)
 - Rearrange output with fixed permutation function

E-box

S-box

- Only non-linear transformation in DES, the core of security of DES.
- $B = b_1 b_2 b_3 b_4 b_5 b_6$
 - b_1b_6 \rightarrow row (2²: 0~3)
 - $b_2b_3b_4b_5 \rightarrow column (2^4: 0~15)$

• C = S(row, column)

E.g.		S_1	1	2	3				7								15
B = 101111	0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
C = S(3,7) = 7	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
= <u>0111</u>	2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
B = 011011, C=?	3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

DES Key Generation

	Left								
57	49	41	33	25	17	9			
1	58	50	42	34	26	18			
10	2	59	51	43	35	27			
19	11	3	60	52	44	36			
			Right						
63	55	47	39	31	23	15			
7	62	54	46	38	30	22			
14	6	61	53	45	37	29			
21	13	5	28	20	12	4			

PC-2 selects the 48-bit subkey for each round from the 56-bit key-schedule state

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

DES: security concern

Weak Keys

- 56 bit key is too short
 - Can be broken on average in 2⁵⁶ ≈7.21*10¹⁶ trials
 - Moore's law: speed of processor doubles per 1.5 yr
- Keys make the same sub-key in more then 1 round.
- DES has 4 week keys
 - 01010101 01010101
 - FEFEFEFE FEFEFEFE
 - E0E0E0E0 F1F1F1F1
 - 1F1F1F1F 0E0E0E0E
 - Using weak keys, the outcome of the PC1 to sub-keys being either all 0, all 1, or alternating 0-1 patterns.
 - Another problem: $E_{\text{weak-key}}(E_{\text{weak-key}}(x)) = x$.

Multiple Encryption & DES

- DES is not secure enough.
- The once large key space, 2⁵⁶, is now too small.
- In 2001, NIST published the Advanced Encryption Standard (AES) as an alternative.
- But users in commerce and finance are not ready to give up on DES.
- Solution: to use multiple DES with multiple keys
 Q: how many times can we use?

A: 2, 3, ...

Double-DES

2-DES

Any problem for this scheme?

Attack Double-DES

(1) try all 2⁵⁶ possible keys for K1 (2) try all 2⁵⁶ possible keys for K2 (3) If $E_{K1'}(P) = D_{K2'}(C)$, try the keys on another (P', C') (4) If $E_{K1'}(P') = D_{K2'}(C')$, (K1', K2') = (K1, K2) with high probability

Takes 2x2⁵⁶=2⁵⁷steps; not much more than attacking 1-DES.

Triple-DES with Two-Keys

- hence must use 3 encryptions
 - would seem to need 3 distinct keys
- In practice: $C = E_{K1}(D_{K2}(E_{K1}(P)))$
 - Also referred to as **EDE** encryption
- Reason:
 - if K1=K2, then 3DES = 1DES. Thus, a 3DES software can be used as a single-DES.
- Standardized in ANSI X9.17 & ISO8732
- No current known practical attacks
 - Q: What about the meet-in-the-middle attack?

Meet-in-the-Middle Attack on 3DES

- 1. For each possible key for K1, encrypt P to produce a possible value for A.
- 2. Using this A, and C, attack the 2DES to obtain a pair of keys (K2, K1').
- 3. If K1' = K1, try the key pair (K1, K2) on another (C',P').
- **4**. If it works, (K1, K2) is the key pair with high probability.
- 5. It takes $O(2^{56} \times 2^{56}) = O(2^{112})$ steps on average.

Triple-DES with Three-Keys

- Encryption: $C = E_{K3}(D_{K2}(E_{K1}(P))).$
- If K1 = K3, we have 3DES with 2 keys.
- If K1 = K2 = K3, we have the regular DES.
- So, 3DES w/ 3keys is backward compatible with 3DES w/ 2 keys and with the regular DES
- Some internet applications have adopted 3DES with three keys.
 - E.g., PGP (pretty good privacy) and S/MIME (Secure/Multipurpose Internet Mail Extensions).

AES (Advanced Encryption Standard)

Overview of AES

- Based on a design principle known as substitution-permutation network (SPN)
- Block length is limited to 128 bit
- The key size can be independently specified to 128, 192 or 256 bits

Key size (words/bytes/bits)	4/16/ 128	6/24/ 192	8/32/ 256
Number of rounds	10	12	14
Expanded key size (words/byte)	44/176	52/208	60/240

General design of AES encryption cipher

AES

- Each round uses 4 functions
 - ByteSub (nonlinear layer) :
 - referred to as an S-box; byte-by-byte substitution
 - ShiftRow (linear mixing layer)
 - A simple permutation row by row
 - MixColumn (nonlinear layer)
 - A substitution that alters each bye in a column as function of all of the bytes in column
 - AddRoundKey (key addition layer)
 - A simple bitwise XOR of the current block with a portion of the expanded key

http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/rijndael_ingles2004.swf

AES 4 Steps

DES vs. AES

	DES	AES		
Date	1976	1999		
Block size	64	128		
Key length	56	128, 192, 256		
Number of rounds	16	10,12,14		
Encryption primitives	Substitution, permutation	Substitution, shift, bit mixing		
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion		
Structure	Feistel	SPN (substitution-permutation network)		
Design	Open	Open		
Design rationale	Closed	Open		
Selection process	Secret	Secret, but accept open public comment		
Source	IBM, enhanced by NSA	Independent cryptographers		

Modes of operation

Q: If block size is bigger than 64 bits in case of using DES?

Block cipher

Common block sizes: n = 64, 128, 256 bits

Common key sizes: k = 40, 56, 64, 80, 128,168, 192, 256 bits

Modes of Operation

- **ECB** Electronic Code Book
- **CBC** Cipher Block Chaining Most popular
- **OFB** Output Feed Back
- **CFB** Cipher Feed Back
- CTR Counter

Modes of Operation: summary

Use CTR

- ECB Electronic Code Book Don't use
- CBC Cipher Block Chaining Most popular, e.g., DES-CBC
- OFB Output Feed Back⁻
- **CFB** Cipher Feed Back
- CTR Counter e.g., AES-CTR

Q: What security objective does this provide?

A: Confidentiality

Operation modes

Operation Mode	Description	Type of Result	Data Unit Size
ECB	Each <i>n</i> -bit block is encrypted independently with the same cipher key.	Block cipher	п
CBC	Same as ECB, but each block is first exclusive-ored with the previous ciphertext.	Block cipher	п
CFB	Each <i>r</i> -bit block is exclusive-ored with an <i>r</i> -bit key, which is part of previous cipher text	Stream cipher	$r \le n$
OFB	Same as CFB, but the shift register is updated by the previous <i>r</i> -bit key.	Stream cipher	$r \le n$
CTR	Same as OFB, but a counter is used instead of a shift register.	Stream cipher	п

Table 8.1Summary of operation modes

Q: How do we know the encryption (block cipher) is secure?

Cryptanalysis

Breaking Ciphers

- Ciphertext only (COA, Known-ciphertext)
 - Attacker can only access to a set of ciphertext
- Known plaintext (KPA)
 - know/suspect plaintext & ciphertext pairs
- Chosen plaintext (CPA)
 - select plaintext to be encrypted and obtain ciphertext
- Chosen ciphertext
 - select ciphertext and obtain plaintext under an unknown key
- Chosen text
 - select plaintext or ciphertext to en/decrypt

Ciphertext-only attack (COA)

Known-plaintext attack (KPA)

Known to attacker	$(P_{1,}C_{1}), (P_{2,}C_{2}), \dots (P_{n,}C_{n}),$	A so b
	1) Key K	a
Objective	2) Algorithm: $C_{n+1} \rightarrow P_{n+1}$	

Attacker obtains some (P, C) pairs, but **cannot** select any P_i and get C_i

Chosen-plaintext attack

Chosen-ciphertext attack

This attack is used against **public key algorithm**. Attacker can generate the ciphertexts by himself using the public key of the target.

Result of Attacks

- Total break:
 - found the key

Global deduction:

- Was not successful in finding the key, but successful in finding an algorithm that can decrypt any ciphertexts of the target.
- Instance deduction:
 - Obtained some plaintexts from some ciphertexts.
- Information deduction:
 - Obtained a partial bits of plaintext of partial bits of the target key

Secureness of an cipher

Computational secure

- Cost of breaking the cipher exceeds the value of the encrypted information
- The time required to break the cipher exceeds the useful lifetime of the information (e.g., 1 month to break the all black's tactics)
- Provably secure:
 - the security of the system can be proven to be equivalent to a hard problem
- Unconditional security
 - Even if the attacker has infinite amount of computing resource, the attacker cannot succeed in cryptanalyzing the algorithm
 - Only one-time pad is proven to be unconditionally secure

Brute Force Search

- always possible to simply try every key
 - e.g., PIN number (0000)
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs	Time required at 10 ⁶ decryptions/µs	
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 minutes$	2.15 milliseconds	
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs = 1142 years	10.01 hours	
128	$2^{128} = 3.4 \times 10^{38}$	2^{127} µs= 5.4 × 10 ²⁴ years	$5.4 imes 10^{18}$ years	
168	$2^{168} = 3.7 \times 10^{50}$	2^{167} µs= 5.9 × 10 ³⁶ years	5.9×10^{30} years	
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \ \mu s$ = 6.4×10^{12} years	6.4×10^6 years	

Q: Is DES computationally secure?

Q: Why do we need public key encryptions?

