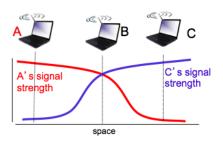

LOOK AT ALL THESE BUSY BEE'S!! GOOD LUCK EVERYONE...

Overview (Kurose Chs. 6, 8) You should be able to:

- (Ch 6) Wireless Communication & Mobility
 - Wireless
 - communication over wireless link.
 - Mobility
 - Handling the mobile user who changes point of attachment to the network.
 - Spectrum of mobility, from the network perspective.



- > Hosts
 - laptop, smartphone
 - run applications
 - stationary (non-mobile) or mobile
- Links
 - Used to connect mobiles to base station
 - multiple access protocol coordinates link access
 - various data rates, transmission distance
- Base stations
 - Typically connected to wired network
 - relay send packets between wired network and wireless hosts in its "area" e.g. cell towers, 802.11 access points, routers
- Network infrastructure
 - base station connects mobiles into wired network
 - handoff: mobile changes base station providing connection into wired network
- Wireless Link/Network characteristics:
 - Decreasing signal strength
 - Radio signal attenuates as it propagates through matter (path loss)
 - Inverse Squared vs Wired Doubling the distance from the emitter attenuates the signal by 1/4th
 - Interference from other sources
 - Standardized wireless network frequencies (2.4 GHz) shared by other devices (phone); devices (motors) interfere as well
 - Multipath propagation
 - Radio signal reflects off objects ground, arriving at destination at slightly diff times
- What makes communication across a wireless network more "difficult?" ANS. Below
- Signal to noise ratio (SNR)
 - larger = good: easier to extract signal from noise.
 - As SNR increases, bit-error rate decreases.

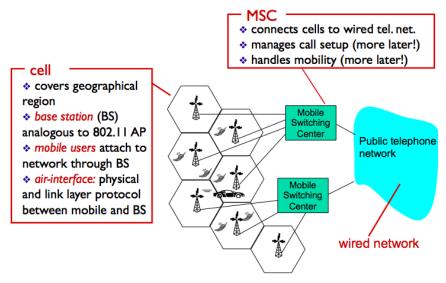
Hidden terminal problem

- . B,A hear each other
- . B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

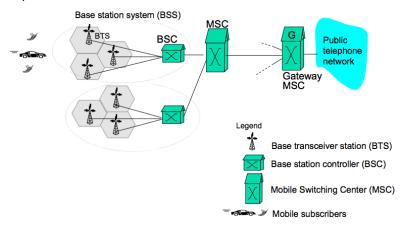
Signal attenuation:

- B,A hear each other
- . B, C hear each other
- A, C can not hear each other interfering at B
- Code Division Multiple Access (CDMA)
 - unique "code" assigned to each user; i.e code set partitioning
 - users share frequency but each user has own "chipping" sequence (i.e. code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
 - encoded signal: (original data) x (chipping sequence)
 - decoding: inner-product of encoded signal and chipping sequence

802.11 Wireless LAN


- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access points aka "base stations"
 - ad hoc mode: hosts only
- Active Scanning: proves requests/creates traffic, via switch.
 - Switches avoid collisions
- Passive Scanning: waits for traffic from hosts, via a hub.
 - Hubs allow collisions

o 802.11 MAC protocols

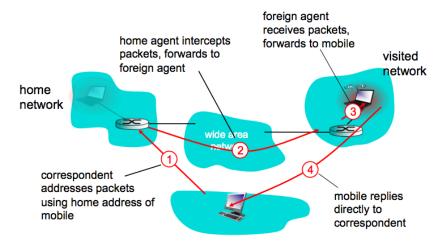

- Carrier Sense Multiple Access (CSMA)
 - sense before transmission
- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
 - nodes attempt to avoid collisions by transmitting only when the channel is sensed to be "idle". [1][2] When they do transmit, nodes transmit their packet data in its entirety.
 - Sender Steps
 - If sense channel idle for distributed inter-frame space (DIFS) then transmit packet.
 - If sense channel busy then start random backoff time. When timer ends, check for ACK from receiver then repeat timer if no ACK.
 - Receiver Steps
 - if frame received OK then reply with ACK after short interframe space (SIFS).

- Request to Send (RTS) used to AVOID COLLISIONS
 - allows sender to "reserve" channel rather than random access of data frames.
 - sender first transmits small request to send (RTS) packets to BS using CSMA
 - BS broadcasts clear-to-send (CTS) in response to RTS.
- Clear-to-send (CTS)
 - heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions
- AVOID COLLISIONS COMPLETELY USING SMALL RESERVATION PACKETS.
- Beacon Frame: management frame containing all information about network.
- Bluetooth (IEEE 802.15 Personal Area Network)
 - no infrastructure = ad hoc, peer to peer
 - "master/slave" relationships

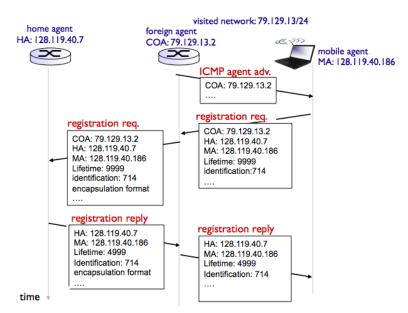
Components of cellular network architecture

- Wimax (World Interoperability for Microwave Access)
 - A family of IEEE 802.16 standards that is competing with 4G-LTE but differ significantly.
- Cellular access
 - 2G (Voice)

- 2.5G
 - 2G networks that have incorporated a packet-switched domain in addition to the circuit-switched domain.
- 3G (Voice+Data)

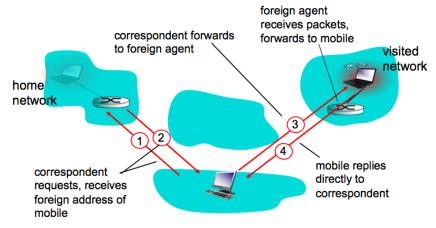

- new cellular data network operates in parallel with original voice (2G) network.
- 4G-LTE (long-term evolution) two important innovations:
 - Evolved Packet Core (EPC) simplified all-IP core network that unifies the circuit-switched voice net and the packet-switched cellular data net
 - LTE Radio Access Network combo of frequency division multiplexing and time division - OFDM (orthogonal frequency division multiplexing) - very little interference
 - o sophisticated MIMO (multi input, multi output) antennas

Mobility


- Home agent
 - entity that will perform mobility functions on behalf of mobile, when mobile is remote
- Foreign agent
 - entity in visited network that performs mobility functions on behalf of mobile
- COA (care-of-address)
 - Address in visited network
 - Used by home agent to forward datagrams to mobile

Mobile IP

- Internet architecture and protocols for supporting mobility
- Three components to standard
 - Indirect routing of datagrams
 - communication from correspondent to mobile goes through home agent, then forwarded to foreign agent, then to mobile. Known as "triangle routing"



- Agent Discovery
 - "agent advertisement" sent by foreign/home agents broadcast ICMP message, typefield 9.
- Registration w/ Home Agent

Mobile Routing

- indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote. Known as "triangle routing"
 - Permanent Address: used by correspondent, hence mobile location transparent to correspondent)
 - Care-of-Address: used by home agent to forward datagrams to mobile.
- direct routing: correspondent gets foreign address of mobile, communicates directly to mobile.

Handoffs

- Goal: route call via new base station, without interruption.
- Reasons for handoff
 - strong signal to/from new BSS.
 - load balance: free up channel in current BSS
 - GSM doesn't mandate why to perform handoff (policy), only how (mechanism).
 - Handoff initiated by old BSS.
- (Ch 8) Network Security
 - Confidentiality
 - Only sender, intended receiver should "understand" message contents
 - sender encrypts message
 - receiver decrypts message
 - Authentication

- sender, receiver want to confirm identity of each other. Verifies, "you are who you claim to be."
- Message integrity
 - sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
- Authorization/Access and availability
 - services must be accessible and available to users.
- Operational security
 - Intrusion Prevention Systems (IPS) and Intrusion Detection Systems (IDS)
- Eavesdropping
 - intercept messages
- Modification
 - o changing message contents, man in the middle attack.
- Insertion or deletion of messages
 - Can potentially be performed by an intruder
- Cryptography:
 - Encryption changing plaintext to ciphertext through use of an encryption algorithm
 - Plaintext message in its original form
 - o Ciphertext Encrypted message: unintelligible to any intruder
- Symmetric Key Cryptography
 - Sender and receiver share same (symmetric) encryption/decryption keys.
 - Data Encryption Standard (DES)
 - creates 56-bit symmetric key, from 64-bit plaintext input.
 - not very secure, improved by 3DES; 3 encryptions with 3 different keys.
 - Advanced Encryption Standard (AES)
 - replaced DES in Nov. 2001.
 - process data in 128-bit blocks.
 - 128, 192, 256-bit keys
- Caesar cipher
 - Very old and simple symmetric key algorithm, form of substitution encryption cipher.
 - Substitute each letter in the plaintext message with letter that is *k* letters later/previous
- Monoalphabetic cipher
 - o Improves on Caesar cipher
 - o substitute one letter for another.
- Block cipher
 - message to be encrypted is processed in blocks of *k* bits
 - Each block encrypted independently using 1:1 mapping (different output for each input)
 - Possible mappings = permutation of inputs (8 possible inputs, 8! mappings = 40,320)
- Public key encryption
 - Public Key Cryptography
 - sender, receiver do not share secret key
 - public encryption key known to all (Kb+)
 - private decryption key known only to receiver (Kb-)
 - o need Kb+ and Kb- such that Kb-(Kb+(m)) = m
 - o given public key Kb+ it should be impossible to compute private key Kb-
- Rivest, Shamir, Adelson algorithm (RSA)
 - Integral part of Public Key Cryptography
 - Determining public and private keys

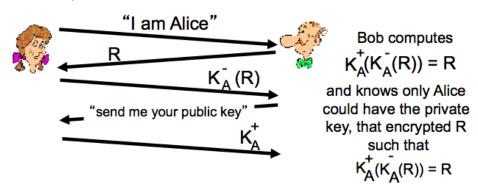
- 1. choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. compute n = pq, z = (p-1)(q-1)
- 3. choose e (with e < n) that has no common factors with z (e, z are "relatively prime").
- 4. choose $\frac{d}{d}$ such that $\frac{d}{d}$ is exactly divisible by z. (in other words: $\frac{d}{d}$ mod z = 1).
- 5. public key is (n,e). private key is (n,d).
- Public key is pair of numbers (n,e); private key is pair of number (n,d)
- To encrypt: c = m^e mod n, where c is ciphertext
- To decrypt: m = c^d mod n, where m is message
- Works because there are no known algorithms for quickly factoring a prime number
- Session Keys
 - Bob & Alice use RSA to exchange a symmetric key Ks.
 - Once both have Ks, they use symmetric key cryptography because its so much faster.
- Message integrity
 - Verify the message was originated from correct sender
 - Verify message was not tampered on its way to receiver
 - Digital Signatures
 - cryptographic technique analogous to hand-written signatures. Cannot be forged.

Digital signatures

- suppose Alice receives msg m, with signature: m, K_B(m)
- * Alice verifies m signed by Bob by applying Bob's public key K_B^+ to $K_B^-(m)$ then checks $K_B^+(K_B^-(m)) = m$.
- If K_B⁺(K_B(m)) = m, whoever signed m must have used Bob's private key.

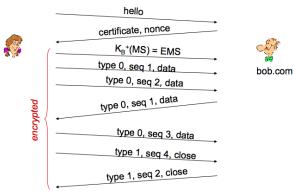
Alice thus verifies that:

- Bob signed m
- > no one else signed m
- > Bob signed m and not m '


non-repudiation:

✓ Alice can take m, and signature K_B(m) to court and prove that Bob signed m

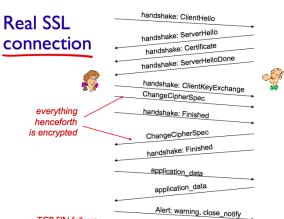
Authentication

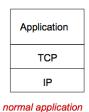

- Nonce, number used once-in-a-lifetime.
 - Used to avoid playback attack.
 - number(R) used only once in a lifetime
 - avoid playback attack
- Ap5.0 requires shared symmetric key in addition to nonce.

security hole: man in the middle attack (MITM)

- Cryptographic Hash Functions
 - Hash function takes an input m and computes a fixed size string H(m) called a hash Internet checksum and Cyclic Redundancy Check (CRC)
 - Cryptographic hash function has additional property
 - Computationally infeasible to find any 2 different messages x and y s.t. H(x) = H(y)
 - Intruder can't substitute one message for another message that is protected by the hash function
 - MD5 hash function widely used (RFC 1321).
- Public key certification
 - Certify that a public key belongs to a specific entity
 - Certificate Authority (CA)
 - Bind public key to particular entity, E
 - Verifies that an entity is who it says it is
- Endpoint authentication
 - o Process of one entity proving its identity to another entity over a computer network
- E-mail:
 - o PGP (Pretty Good Privacy) email encryption scheme that has become de facto standard
 - uses MD5 or SHA for calculating message digest; CAST, triple-DES, or IDEA for symmetric key encryption; and RSA for public key encryption.
 - To ensure secrecy, sender authentication, and message integrity. Sender must use all three keys; sender's private key, receiver's public key, newly created symmetric key.
- Secure Socket Layer (SSL) Transport layer security
 - widely deployed security protocol supported by almost all browsers (https)
 - o provides: confidentiality, integrity, authentication
 - Original goals
 - web e-commerce transactions
 - encryption
 - web-server authentication
 - optional client authentication
 - minimum hassle in doing business with new merchant
 - Available to all TCP applications

Toy SSL: summary

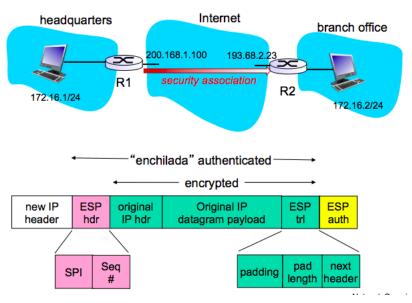



common SSL symmetric ciphers

- DES Data Encryption Standard: block
- 3DES Triple strength: block
- RC2 Rivest Cipher 2: block
- RC4 Rivest Cipher 4: stream

SSL Public key encryption

RSA

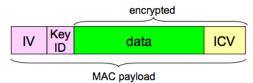


application with SSL

- IP Security Protocol (IPsec) network layer security
 - secures IP datagrams between two network-layer entities
 - used to create VPNs (virtual private networks) that run over public Internet
 - provide data integrity, origin authentication, replay attack prevention, confidentiality.
 - Two protocols

TCP FIN follows

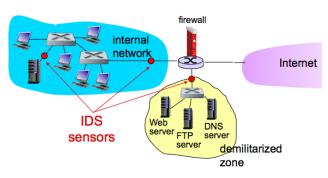
- Authentication Header (AH)
 - provides source authentication and data integrity but not confidentiality.
- **Encapsulation Security Protocol (ESP)**
 - provides source authentication, data integrity, and confidentiality, thus more common.
- IPsec datagram



IPsec summary

- IKE message exchange for algorithms, secret keys, SPI numbers
- either AH or ESP protocol (or both)
 - AH provides integrity, source authentication
 - ESP protocol (with AH) additionally provides encryption
- IPsec peers can be two end systems, two routers/ firewalls, or a router/firewall and an end system
- Wired Equivalent Privacy (WEP)
 - an easily broken security algorithm for IEE802.11.
 - uses symmetric key cryptography.
 - self-synchronizing: each packet encrypted separately.
 - uses RC4 symmetric cipher

WEP encryption (I)


- sender calculates Integrity Check Value (ICV) over data
 - four-byte hash/CRC for data integrity
- each side has 104-bit shared key
- sender creates 24-bit initialization vector (IV), appends to key: gives 128-bit key
- sender also appends keyID (in 8-bit field)
- 128-bit key inputted into pseudo random number generator to get keystream
- data in frame + ICV is encrypted with RC4:
 - B\bytes of keystream are XORed with bytes of data & ICV
 - IV & keyID are appended to encrypted data to create payload
 - payload inserted into 802.11 frame

- New initialization vector (IV) for each frame!
- Firewalls
 - isolates organizations internal network from larger Internet, allowing some packets to pass, blocking others.
 - o Form of intrusion prevention system.
 - Prevent DoS attacks, illegal modifications/access of internal data.
 - allow only authorized access to internal network.
 - Three types of firewalls: stateless/stateful packet filters and application gateways.
 - Packet filters
 - Stateless
 - internal network separated to Internet via router firewall which filters incoming/outgoing packet-by-packet.
 - Uses Access Control Lists (ACL) to determine rules. table of rules, applied top to bottom to incoming packets.
 - Stateful
 - track status of every TCP connection from setup SYN to teardown FIN and determine whether packets "make sense."
 - App gateways
 - filters packets on application data as well as on IP/TCP/UDP fields
 - example: allow select internal users to telnet outside
 - 1. require all telnet users to telnet through gateway
 - 2. for authorized users, gateway sets up telnet connection to dest host. gateway relays data between 2 connections
 - 3. router filter blocks all telnet connections not originating from gateway
- Intrusion detection systems
 - deep packet inspection:
 - look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
 - examine correlation among multiple packets
 - port scanning
 - network mapping
 - DoS attack

Intrusion detection systems

 multiple IDSs: different types of checking at different locations

Network Security (summary)

basic techniques.....

- cryptography (symmetric and public)
- message integrity
- end-point authentication

.... used in many different security scenarios

- secure email
- secure transport (SSL)
- IP sec
- 802.11

operational security: firewalls and IDS