CSE 434 Name: Bing Hao Computer Networks (2014 Spring) | 2014

Home Page: http://www.public.asu.edu/~bhao2
Homework 3

Problems:

2,7,14,15,20and 25

Question: 2

Consider Figure 3.5. What are the source and destination port values in the segments flowing
from the server back to the clients’ processes? What are the IP addresses in the network-layer
datagrams carrying the transport-layer segments?

Answer:
Web client Web Per-connection
host C server B HTTP
processes
— {—Transport-
source port: dest. port: source port: dest. port: layer
7522 80 26145 80 demultiplexing
source IP: dest. IP: source IP: dest. IP:
C B I‘ I‘ C B
Web client \ Y,
host A \ y /)
| ' —
—

source port dest. portc
26145 B0

source IP: dest. IP:
A B

Figure 3.5 + Two clients, usini the same destination port number (80) to
communicate with the same Web server application

The source port and destination port will swap for the server back to the client’ processes. For
the Host A, it is sending segment with source port 26145 and destination port 80. Therefore the
server B will send the response back to Host A using source port 80 and destination port 26145.
For the Host C, server B will send the response back with source port 80 and destination port
26145 and 7532.

The IP addresses in the datagrams that are heading back to A or C will have the source IP set to
the servers IP address, and the destination IP set to the appropriate clients address, which it
specified in its own request it had originally sent to the server.

CSE 434 Name: Bing Hao Computer Networks (2014 Spring) | 2014

Home Page: http://www.public.asu.edu/~bhao2
Question: 7

In protocol rdt3.0, the ACK packets flowing from the receiver to the sender do not have
sequence numbers (although they do have an ACK field that contains the sequence number of
the packet they are acknowledging). Why is it that our ACK packets do not require sequence
numbers?

Answer:

To best answer this question consider why we needed sequence numbers in the first place. We
saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a
duplicate of an already received data packet. In the case of ACKs, the sender does not need this
info (i.e. a sequence number on an ACK) to tell detect a duplicate ACK. A duplicate ACK is
obvious to the rdt3.0 receiver, since when it has received the original ACK it transitioned to the
next state. The duplicate ACK is not the ACK that the sender needs and hence is ignored by the
rdt3.0 sender.

Question: 14

Consider a reliable data transfer protocol that uses only negative acknowledgments. Suppose

the sender sends data only infrequently. Would a NAK-only protocol be preferable to a protocol
that uses ACKs? Why? Now suppose the sender has a lot of data to send and the end-to-end
connection experiences few losses. In this second case, would a NAK-only protocol be preferable
to a protocol that uses ACKs? Why?

Answer:

In a NAK only protocol, the loss of packet x is only detected by the receiver when packet x+1 is
received. That is, the receivers receives x-1 and then x+1, only when x+1 is received does the
receiver realize that x was missed. If there is a long delay between the transmission of x and the
transmission of x+1, then it will be a long time until x can be recovered, under a NAK only
protocol.

On the other hand, if data is being sent often, then recovery under a NAK-only scheme could
happen quickly. Moreover, if errors are infrequent, then NAKs are only occasionally sent (when
needed), and ACK are never sent — a significant reduction in feedback in the NAK-only case over
the ACK-only case.

Question: 15

Consider the cross-country example shown in Figure 3.17. How big would the window size have
to be for the channel utilization to be greater than 98 percent? Suppose that the size of a packet
is 1,500 bytes, including both header fields and data.

CSE 434 Name: Bing Hao Computer Networks (2014 Spring) | 2014

Home Page: http://www.public.asu.edu/~bhao2
Answer:

Data packet Data packets
L
i ACK packets

Bl —N N\ e

—_—

Y

a. A stop-and-wait protocol in operation b. A pipelined protocol in operation

Figure 3.17 ¢ Stop-and-wait versus pipelined protocol

Reference: book page 217

L
d =—
Since " R and we know the size of a packet is 1500bytes, the link is 1Gbps, thus
1500bytes*8 -
Therefore, d,,. :+: 0.00001.2 seconds = 0.012 milliseconds, this means a

packet needs 0.012 ms to be sent on the link.

According to the problem, the utilization = 0.98 is required.

U L/R
sender — : [t
Since RTT + L/R , and we know RTT = 30,

framns

L
R =0.012ms

Let the window size be x:

L*
R Y 0012%x 0012*x
U= —= - =0.98
RTT 4 30+0.012 30.012

So, x = 2450.98

The window size would have to be approximately 2451 packets.

Question: 20

Consider a scenario in which Host A and Host B want to send messages to Host C. Hosts A and C
are connected by a channel that can lose and corrupt (but not reorder) messages. Hosts B and C
are connected by another channel (independent of the channel connecting A and C) with the

CSE 434 Name: Bing Hao Computer Networks (2014 Spring) | 2014

Home Page: http://www.public.asu.edu/~bhao2
same properties. The transport layer at Host C should alternate in delivering messages from A
and B to the layer above (that is, it should first deliver the data from a packet from A, then the
data from a packet from B, and so on). Design a stop-and-wait-like error-control protocol for
reliably transferring packets from A and B to C, with alternating delivery at C as described above.
Give FSM descriptions of A and C. (Hint: The FSM for B should be essentially the same as for A.)
Also, give a description of the packet format(s) used.

Answer:

This problem is a variation on the simple stop-and-wait protocol (rdt3.0). Because the channel
may lose message and because the sender may resend a message that one of the receivers has
already received (either because of a premature timeout or because the other receiver has yet
to receive the data correctly), sequence numbers are needed. As in rdt3.0, a 0-bit sequence

number will suffice here.

In this problem, the sender state indicates whether the sender has received an ACK from
B (only), from C (only) or from neither C nor B. The receiver state indicates which
sequence number the receiver is waiting for.

rdt_rev(rcvpkt) && notcorrupt(rovpkt)
&& is_ACK(seqnum,C)

Se nder seqnum = segnum+1

udt_send(sndpkt, seqgnum})
start_timer

timeout

udt_send(sndpkt, segnum)
| start_timer
|

(rdt_rew(revpkt) && notcorrupt(revpkt)
&& is_not_ack(segnum,C))
11 (rdt_rev{rovpkt) && corrupt{rcvpkt))

(rdt_rov(rovpkt) && corrupt(revpkt))
|

(rdt_rev(revpkt) && notcorru pt{revphkt)

&& is_not_ack(seqnum,*®)) rat_rev(revphkt)

&& notcorrupt{revpkt)
&& is ack(segnum,B)

wait fory,
BorC |}
ACK

(rdt_rcw(revpkt) && notcorrupt{rcvpkt)
&& is_not_ack(seqnuinm,B))
|| (rdt_rev(revpkt) && corrupt(revpkt))

rdt_rcwrcvpht)
&& notcorrupt{rcvpkt)
&& is_ack(seqnum,C)

timeout
udt_send(sndpkt, segnum)
start_timer

timeout

e g rrupy(revplt) Gat_sena(sndpkt, seqnum)
- start_timer

segnum = segnum+1
udt_send(sndpkt. seqnum)
start_timer

CSE

434 Name: Bing Hao Computer Networks (2014 Spring) | 2014

Home Page: http://www.public.asu.edu/~bhao2

receiver B

(rdt_rcv(rcvphkt) && corrupt{rcvpkt))

rdt_rev{revpkt)
&& notcorrupt(revpkt)
&& has seqsegnum)

udt_send(ACK, seqnum,B)
seqnum = seqnum+ 1

(rdt_rcwrcvpkt)

&& notcorrupt{revpkt
&& has_seq(x))
&& x !'= segnum

udt_send(ACK, x,B)

Question: 25

We have said that an application may choose UDP for a transport protocol because UDP offers
finer application control (than TCP) of what data is sent in a segment and when.

a. Why does an application have more control of what data is sent in a segment?

b. Why does an application have more control on when the segment is sent?

Answer:

Consider sending an application message over a transport protocol. With TCP, the
application writes data to the connection’s send buffer’ and TCP will grab bytes without
necessarily putting a single message in the TCP segment (TCP may put more or less than
a single message in a segment). UDP, on the other hand, encapsulates in a segment
whatever the application gives it. So, if the application gives UDP an application
message, this message will be payload of the UDP segment. Thus, with UDP, an
application has more control of what data is sent in a segment.

With TCP, due to flow control and congestion control, there may be significant delay
from the time when an application writes data to its send buffer until when the data is
given to the network layer. UDP does not have delays due to flow control congestion
control.

