
Application Layer 2-1

Chapter 2
Application Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only
ask the following:
 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-3

Chapter 2: application layer

our goals:
 conceptual,

implementation aspects
of network application
protocols
 transport-layer

service models
 client-server

paradigm
 peer-to-peer

paradigm

 learn about protocols by
examining popular
application-level
protocols
 HTTP
 FTP
 SMTP / POP3 / IMAP
 DNS

 creating network
applications
 socket API

Application Layer 2-4

Some network apps

 e-mail
 web
 text messaging
 remote login
 P2P file sharing
 multi-user network games
 streaming stored video

(YouTube, Hulu, Netflix)

 voice over IP (e.g., Skype)
 real-time video

conferencing
 social networking
 search
 …
 …

Application Layer 2-5

Creating a network app
write programs that:
 run on (different) end systems
 communicate over network
 e.g., web server software

communicates with browser
software

no need to write software for
network-core devices

 network-core devices do not
run user applications

 applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application Layer 2-6

Application architectures

possible structure of applications:
 client-server
 peer-to-peer (P2P)

Application Layer 2-7

Client-server architecture

server:
 always-on host
 permanent IP address
 data centers for scaling

clients:
 communicate with server
 may be intermittently

connected
 may have dynamic IP

addresses
 do not communicate directly

with each other

client/server

Application Layer 2-8

P2P architecture
 no always-on server
 arbitrary end systems

directly communicate
 peers request service from

other peers, provide service
in return to other peers
 self scalability – new

peers bring new service
capacity, as well as new
service demands

 peers are intermittently
connected and change IP
addresses
 complex management

peer-peer

Application Layer 2-9

Processes communicating

process: program running
within a host

 within same host, two
processes communicate
using inter-process
communication (defined by
OS)

 processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

 aside: applications with P2P
architectures have client
processes & server
processes

clients, servers

Application Layer 2-10

Sockets
 process sends/receives messages to/from its socket
 socket analogous to door
 sending process shoves message out door
 sending process relies on transport infrastructure on

other side of door to deliver message to socket at
receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-11

Addressing processes

 to receive messages,
process must have identifier

 host device has unique 32-
bit IP address

 Q: does IP address of host
on which process runs
suffice for identifying the
process?

 identifier includes both IP
address and port numbers
associated with process on
host.

 example port numbers:
 HTTP server: 80
 mail server: 25

 to send HTTP message to
gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12
 port number: 80

 more shortly…

 A: no, many processes
can be running on same
host

Application Layer 2-12

App-layer protocol defines
 types of messages

exchanged,
 e.g., request, response

 message syntax:
 what fields in messages

& how fields are
delineated

 message semantics
 meaning of information

in fields
 rules for when and how

processes send & respond
to messages

open protocols:
 defined in RFCs
 allows for interoperability
 e.g., HTTP, SMTP
proprietary protocols:
 e.g., Skype

Application Layer 2-13

What transport service does an app need?

data integrity
 some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

 other apps (e.g., audio) can
tolerate some loss

timing
 some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
 some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

security
 encryption, data integrity,

…

Application Layer 2-14

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

Application Layer 2-15

Internet transport protocols services

TCP service:
 reliable transport between

sending and receiving
process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantee, security

 connection-oriented: setup
required between client and
server processes

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-16

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Securing TCP

TCP & UDP
 no encryption
 cleartext passwds sent

into socket traverse
Internet in cleartext

SSL
 provides encrypted

TCP connection
 data integrity
 end-point

authentication

SSL is at app layer
 Apps use SSL libraries,

which “talk” to TCP
SSL socket API
 cleartext passwds sent

into socket traverse
Internet encrypted

 See Chapter 7

Application Layer 2-17

Application Layer 2-18

Chapter 2: outline

2.1 principles of network
applications
 app architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-19

Web and HTTP

First, a review…
 web page consists of objects
 object can be HTML file, JPEG image, Java applet,

audio file,…
 web page consists of base HTML-file which

includes several referenced objects
 each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-20

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model
 client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

 server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iphone running
Safari browser

Application Layer 2-21

HTTP overview (continued)

uses TCP:
 client initiates TCP

connection (creates
socket) to server, port 80

 server accepts TCP
connection from client

 HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must be
maintained

 if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-22

HTTP connections

non-persistent HTTP
 at most one object

sent over TCP
connection
 connection then

closed
 downloading multiple

objects required
multiple connections

persistent HTTP
 multiple objects can

be sent over single
TCP connection
between client, server

Application Layer 2-23

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer 2-24

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer 2-25

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:
 one RTT to initiate TCP

connection
 one RTT for HTTP request

and first few bytes of HTTP
response to return

 file transmission time
 non-persistent HTTP

response time =
2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer 2-26

Persistent HTTP

non-persistent HTTP issues:
 requires 2 RTTs per object
 OS overhead for each TCP

connection
 browsers often open

parallel TCP connections
to fetch referenced objects

persistent HTTP:
 server leaves connection

open after sending
response

 subsequent HTTP
messages between same
client/server sent over
open connection

 client sends requests as
soon as it encounters a
referenced object

 as little as one RTT for all
the referenced objects

Application Layer 2-27

HTTP request message

 two types of HTTP messages: request, response
 HTTP request message:

 ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Application Layer 2-28

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer 2-29

Uploading form input

POST method:
 web page often includes

form input
 input is uploaded to

server in entity body

URL method:
 uses GET method
 input is uploaded in URL

field of request line:

www.somesite.com/animalsearch?monkeys&banana

Application Layer 2-30

Method types

HTTP/1.0:
 GET
 POST
 HEAD
 asks server to leave

requested object out
of response

HTTP/1.1:
 GET, POST, HEAD
 PUT
 uploads file in entity

body to path specified
in URL field

 DELETE
 deletes file specified in

the URL field

Application Layer 2-31

HTTP response message

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

Application Layer 2-32

HTTP response status codes

200 OK
 request succeeded, requested object later in this msg

301 Moved Permanently
 requested object moved, new location specified later in this msg

(Location:)
400 Bad Request

 request msg not understood by server
404 Not Found

 requested document not found on this server
505 HTTP Version Not Supported

 status code appears in 1st line in server-to-
client response message.

 some sample codes:

Application Layer 2-33

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:
GET /~ross/ HTTP/1.1
Host: cis.poly.edu

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Application Layer 2-34

User-server state: cookies

many Web sites use cookies
four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:
 Susan always access Internet

from PC
 visits specific e-commerce

site for first time
 when initial HTTP requests

arrives at site, site creates:
 unique ID
 entry in backend

database for ID

Application Layer 2-35

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Application Layer 2-36

Cookies (continued)
what cookies can be used

for:
 authorization
 shopping carts
 recommendations
 user session state (Web

e-mail)

cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name and

e-mail to sites

aside

how to keep “state”:
 protocol endpoints: maintain state at

sender/receiver over multiple
transactions

 cookies: http messages carry state

Application Layer 2-37

Web caches (proxy server)

 user sets browser: Web
accesses via cache

 browser sends all HTTP
requests to cache
 object in cache: cache

returns object
 else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin
server

origin
server

Application Layer 2-38

More about Web caching

 cache acts as both
client and server
 server for original

requesting client
 client to origin server

 typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
 reduce response time

for client request
 reduce traffic on an

institution’s access link
 Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-39

Caching example:

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

problem!

Application Layer 2-40

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

Caching example: fatter access link

origin
servers

1.54 Mbps
access link

154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network

1 Gbps LAN

institutional
network

1 Gbps LAN

Application Layer 2-41

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 100%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Application Layer 2-42

Caching example: install local cache

Calculating access link
utilization, delay with cache:

 suppose cache hit rate is 0.4
 40% requests satisfied at cache,

60% requests satisfied at origin

origin
servers

1.54 Mbps
access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
 = 0.6 (2.01) + 0.4 (~msecs)
 = ~ 1.2 secs
 less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network

1 Gbps LAN

local web
cache

Application Layer 2-43

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version
 no object transmission

delay
 lower link utilization

 cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

 server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Application Layer 2-44

Chapter 2: outline

2.1 principles of network
applications
 app architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-45

FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

 transfer file to/from remote host
 client/server model
 client: side that initiates transfer (either to/from remote)
 server: remote host

 ftp: RFC 959
 ftp server: port 21

Application Layer 2-46

FTP: separate control, data connections

 FTP client contacts FTP server
at port 21, using TCP

 client authorized over control
connection

 client browses remote
directory, sends commands
over control connection

 when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

 after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-47

FTP commands, responses

sample commands:
 sent as ASCII text over

control channel
 USER username
 PASS password
 LIST return list of file in

current directory
 RETR filename

retrieves (gets) file
 STOR filename stores

(puts) file onto remote
host

sample return codes
 status code and phrase (as

in HTTP)
 331 Username OK,
password required

 125 data
connection
already open;
transfer starting

 425 Can’t open
data connection

 452 Error writing
file

Application Layer 2-48

Chapter 2: outline

2.1 principles of network
applications
 app architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-49

Electronic mail

Three major components:
 user agents
 mail servers
 simple mail transfer

protocol: SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages
 e.g., Outlook, Thunderbird,

iPhone mail client
 outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-50

Electronic mail: mail servers

mail servers:
 mailbox contains incoming

messages for user
 message queue of outgoing

(to be sent) mail messages
 SMTP protocol between

mail servers to send email
messages
 client: sending mail

server
 “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-51

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer
 handshaking (greeting)
 transfer of messages
 closure

 command/response interaction (like HTTP, FTP)
 commands: ASCII text
 response: status code and phrase

 messages must be in 7-bit ASCI

Application Layer 2-52

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

Application Layer 2-53

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Application Layer 2-54

Try SMTP interaction for yourself:

 telnet servername 25
 see 220 reply from server
 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client (reader)

Application Layer 2-55

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in
7-bit ASCII

 SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:
 HTTP: pull
 SMTP: push

 both have ASCII
command/response
interaction, status codes

 HTTP: each object
encapsulated in its own
response msg

 SMTP: multiple objects
sent in multipart msg

Application Layer 2-56

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,
 To:
 From:
 Subject:
different from SMTP MAIL

FROM, RCPT TO:
commands!

 Body: the “message”
 ASCII characters only

header

body

blank
line

Application Layer 2-57

Mail access protocols

 SMTP: delivery/storage to receiver’s server
 mail access protocol: retrieval from server
 POP: Post Office Protocol [RFC 1939]: authorization,

download
 IMAP: Internet Mail Access Protocol [RFC 1730]: more

features, including manipulation of stored msgs on
server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

Application Layer 2-58

POP3 protocol

authorization phase
 client commands:

 user: declare username
 pass: password

 server responses
 +OK
 -ERR

transaction phase, client:
 list: list message numbers
 retr: retrieve message by

number
 dele: delete
 quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application Layer 2-59

POP3 (more) and IMAP
more about POP3
 previous example uses

POP3 “download and
delete” mode
 Bob cannot re-read e-

mail if he changes
client

 POP3 “download-and-
keep”: copies of messages
on different clients

 POP3 is stateless across
sessions

IMAP
 keeps all messages in one

place: at server
 allows user to organize

messages in folders
 keeps user state across

sessions:
 names of folders and

mappings between
message IDs and folder
name

Application Layer 2-60

Chapter 2: outline

2.1 principles of network
applications
 app architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-61

DNS: domain name system

people: many identifiers:
 SSN, name, passport #

Internet hosts, routers:
 IP address (32 bit) -

used for addressing
datagrams

 “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
 note: core Internet function,

implemented as application-
layer protocol

 complexity at network’s
“edge”

Application Layer 2-62

DNS: services, structure
why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized database
 maintenance

DNS services
 hostname to IP address

translation
 host aliasing

 canonical, alias names
 mail server aliasing
 load distribution
 replicated Web

servers: many IP
addresses correspond
to one name

A: doesn’t scale!

Application Layer 2-63

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
 client queries root server to find com DNS server
 client queries .com DNS server to get amazon.com DNS server
 client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

Application Layer 2-64

DNS: root name servers

 contacted by local name server that can not resolve name
 root name server:
 contacts authoritative name server if name mapping not known
 gets mapping
 returns mapping to local name server

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

Application Layer 2-65

TLD, authoritative servers

top-level domain (TLD) servers:
 responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
 Network Solutions maintains servers for .com TLD
 Educause for .edu TLD

authoritative DNS servers:
 organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

 can be maintained by organization or service provider

Application Layer 2-66

Local DNS name server

 does not strictly belong to hierarchy
 each ISP (residential ISP, company, university) has

one
 also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
 has local cache of recent name-to-address translation

pairs (but may be out of date!)
 acts as proxy, forwards query into hierarchy

Application Layer 2-67

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Application Layer 2-68

45

6

3

recursive query:
 puts burden of name

resolution on
contacted name
server

 heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-69

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)
 TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
 if name host changes IP address, may not be known

Internet-wide until all TTLs expire
 update/notify mechanisms proposed IETF standard
 RFC 2136

Application Layer 2-70

DNS records

DNS: distributed db storing resource records (RR)

type=NS
 name is domain (e.g.,

foo.com)
 value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname
 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
servereast.backup2.ibm.com

 value is canonical name

type=MX
 value is name of mailserver

associated with name

Application Layer 2-71

DNS protocol, messages

 query and reply messages, both with same message
format

msg header
 identification: 16 bit # for

query, reply to query uses
same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-72

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-73

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
 provide names, IP addresses of authoritative name server

(primary and secondary)
 registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks
 Bombard root servers

with traffic
 Not successful to date
 Traffic Filtering
 Local DNS servers

cache IPs of TLD
servers, allowing root
server bypass

 Bombard TLD servers
 Potentially more

dangerous

Redirect attacks
 Man-in-middle
 Intercept queries

 DNS poisoning
 Send bogus relies to

DNS server, which
caches

Exploit DNS for DDoS
 Send queries with

spoofed source
address: target IP

 Requires amplification
Application Layer 2-74

Application Layer 2-75

Chapter 2: outline

2.1 principles of network
applications
 app architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-76

Pure P2P architecture
 no always-on server
 arbitrary end systems

directly communicate
 peers are intermittently

connected and change IP
addresses

examples:
 file distribution

(BitTorrent)
 Streaming (KanKan)
 VoIP (Skype)

Application Layer 2-77

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-78

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies:
 time to send one copy: F/us

 time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download rate
 min client download time: F/dmin

us

network
di

ui

F

Application Layer 2-79

File distribution time: P2P

 server transmission: must
upload at least one copy
 time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + ui)}

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits
 max upload rate (limting max download rate) is us + ui

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer 2-80

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-81

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

 file divided into 256Kb chunks
 peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer 2-82

 peer joining torrent:
 has no chunks, but will

accumulate them over time
from other peers

 registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers
 peer may change peers with whom it exchanges chunks
 churn: peers may come and go
 once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

Application Layer 2-83

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that
they have

 Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)
 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer
 newly chosen peer may join top 4

Application Layer 2-84

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

Distributed Hash Table (DHT)

DHT: a distributed P2P database
 database has (key, value) pairs; examples:
 key: ss number; value: human name
 key: movie title; value: IP address

Distribute the (key, value) pairs over the
(millions of peers)

 a peer queries DHT with key
 DHT returns values that match the key

 peers can also insert (key, value) pairs
Application 2-85

Q: how to assign keys to peers?

 central issue:
 assigning (key, value) pairs to peers.

 basic idea:
 convert each key to an integer
 Assign integer to each peer
 put (key,value) pair in the peer that is closest

to the key

Application 2-86

DHT identifiers

 assign integer identifier to each peer in range
[0,2n-1] for some n.
 each identifier represented by n bits.

 require each key to be an integer in same range
 to get integer key, hash original key
 e.g., key = hash(“Led Zeppelin IV”)
 this is why its is referred to as a distributed “hash”

table

Application 2-87

Assign keys to peers

 rule: assign key to the peer that has the
closest ID.

 convention in lecture: closest is the
immediate successor of the key.

 e.g., n=4; peers: 1,3,4,5,8,10,12,14;
 key = 13, then successor peer = 14
 key = 15, then successor peer = 1

Application 2-88

1

3

4

5

8
10

12

15

Circular DHT (1)

 each peer only aware of immediate successor and
predecessor.

 “overlay network”
Application 2-89

0001

0011

0100

0101

1000
1010

1100

1111

Who’s responsible
for key 1110 ?I am

O(N) messages
on avgerage to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Application 2-90

Circular DHT (1)

Circular DHT with shortcuts

 each peer keeps track of IP addresses of predecessor,
successor, short cuts.

 reduced from 6 to 2 messages.
 possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query

1

3

4

5

8
10

12

15

Who’s responsible
for key 1110?

Application 2-91

Peer churn

example: peer 5 abruptly leaves
peer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes
8’s immediate successor its second successor.
what if peer 13 wants to join?

1

3

4

5

8
10

12

15

handling peer churn:
peers may come and go (churn)
each peer knows address of its
two successors
each peer periodically pings its
two successors to check aliveness
if immediate successor leaves,
choose next successor as new
immediate successor

Application 2-92

Application Layer 2-93

Chapter 2: outline

2.1 principles of network
applications
 app architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming

with UDP and TCP

Application Layer 2-94

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-95

Socket programming

Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2. The server receives the data and converts

characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays

the line on its screen.

Application Layer 2-96

Socket programming with UDP

UDP: no “connection” between client & server
 no handshaking before sending data
 sender explicitly attaches IP destination address and

port # to each packet
 rcvr extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
 UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-97

server (running on serverIP) client

Application Layer 2-98

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)

print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Application Layer 2-99

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Application Layer 2-100

Socket programming with TCP

client must contact server
 server process must first be

running
 server must have created

socket (door) that
welcomes client’s contact

client contacts server by:
 Creating TCP socket,

specifying IP address, port
number of server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
 allows server to talk with

multiple clients
 source port numbers used

to distinguish clients
(more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Application Layer 2-101

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Application Layer 2-102

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Application Layer 2-103

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Application Layer 2-104

Chapter 2: summary

 application architectures
 client-server
 P2P

 application service
requirements:
 reliability, bandwidth, delay

 Internet transport service
model
 connection-oriented,

reliable: TCP
 unreliable, datagrams: UDP

our study of network apps now complete!

 specific protocols:
 HTTP
 FTP
 SMTP, POP, IMAP
 DNS
 P2P: BitTorrent, DHT

 socket programming: TCP,
UDP sockets

Application Layer 2-105

 typical request/reply
message exchange:
 client requests info or

service
 server responds with

data, status code
 message formats:
 headers: fields giving

info about data
 data: info being

communicated

important themes:
 control vs. data msgs
 in-band, out-of-band

 centralized vs. decentralized
 stateless vs. stateful
 reliable vs. unreliable msg

transfer
 “complexity at network

edge”

Chapter 2: summary
most importantly: learned about protocols!

